Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
The evolution of soil structure in agricultural soils is driven by natural and anthropogenic factors including inherent soil properties, climate and soil management interventions, all acting at different spatial and temporal scales. Although the causal relationships between soil structure and these individual factors are increasingly understood, their relative importance and complex interactive effects on soil structure have so far not been investigated across a geo-climatic region. Here we present the first attempt to identify the relative importance of factors that drive the evolution of soil structure in agricultural soils as well as their direction of effect with a focus on the temperate-boreal zone. This was done using a random forest (RF) approach including soil, climate, time, and site factors as covariates. Relative entropy, as quantified by the Kullback-Leibler (KL) divergence, was used as a quantitative index of soil structure, which is derived from the particle-size distribution and soil water retention data, and integrates the effects of soil structure on pores from the micrometre-scale to large macropores. Our dataset includes 431 intact topsoil and subsoil samples from 89 agricultural sites across Sweden and Norway, which were sampled between 1953 and 2017. The relative importance of covariates for the evolution of soil structure was identified and their non-linear and non-monotonic effects on the KL divergence were investigated through partial dependence analysis. To reveal any differences between topsoils (0–30 cm; n = 174) and subsoils (30–100 cm; n = 257), the same analysis was repeated separately on these two subsets. The covariates were able to explain on average more than 50% of the variation in KL divergence for all soil samples and when only subsoil samples were included. However, the predictions were poorer for topsoil samples (≈ 35%), underlining the complex dynamics of soil structure in agricultural topsoils. Parent material was the most important predictor for the KL divergence, followed by clay content for all soil samples and sampling year for only subsoil samples. Mean annual air temperature ranked third and annual precipitation ranked fourth for subsoil samples. However, it remains unclear whether the effects of climate factors are direct (e.g., freezing and thawing, wetting and drying, rainfall impact) or indirectly expressed through interactions with soil management. The partial dependence analysis revealed a soil organic carbon threshold of around 3% below which soil structure starts to deteriorate. Besides this, our results suggest that subsoil structure in the agricultural land of Sweden deteriorated steadily during the 1950′s to 1970′s, which we attribute to traffic compaction as a consequence of agricultural intensification. We discuss our findings in the light of data bias, laboratory methods and multicollinearity and conclude that the approach followed here gave valuable insights into the drivers of soil structure evolution in agricultural soils of the temperate-boreal zone. Theses insights will be of use to inform soil management interventions that address soil structure or soil properties and functions related to it.
Abstract
No abstract has been registered
Abstract
Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. Soils are no exception and concentrations of polyethylene mulch debris up to 380 kg/ha have been reported in Chinese agricultural soils. A variety of biodegradable plastic products have thus been developed and marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not always fulfilled, and the risk that biodegradable plastics could also contribute to plastic pollution must be evaluated. In this presentation, we want to share the knowledge gained through research projects on biodegradable plastics in agricultural soil, where we both studied the degradation of biodegradable mulch under Nordic soil conditions, and the fate of biodegradable plastics in two major soil amendments: compost and biogas digestate. A two-year field experiment with biodegradable mulch (PBAT-starch and PBAT-PLA) buried in soil in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation already after 2 months, but that complete degradation may take 3 to 9 years, depending on soil temperature and soil organic matter content (both correlate positively with degradation rate). Accumulation is therefore likely to happen when biodegradable mulch is repeatedly used every year. A full-scale experiment with compostable plastic cups (PLA) at an industrial composting plant, where we followed their fate and conducted metagenomic analysis over 13 weeks, demonstrated the major role played by fungi for a successful degradation of PLA. However, the successful management of biodegradable plastic products largely depends on existing waste management infrastructure. Most biodegradable plastic bags, labelled as compostable and used for food waste collection do not end up in industrial composting plants in Norway, but in biogas production plants. Here, we showed that these plastic bags (starch-based polymer) are only marginally degraded (maximum 21-33 % mass loss) during biogas production, and likely to end up in biogas digestate and then in agricultural soils, unless digestate is treated to remove plastic residues.
Abstract
Since the 1950s, the use of plastics in agriculture has helped solving many challenges related to food production, while its persistence and mismanagement has led to the plastic pollution we face today. Soils are no exception and concentrations of polyethylene mulch debris up to 380 kg/ha have been reported in Chinese agricultural soils. A variety of biodegradable plastic products have thus been developed and marketed, with the aim to solve plastic pollution through complete degradation after use. But the environmental conditions for rapid and complete degradation are not always fulfilled, and the risk that biodegradable plastics could also contribute to plastic pollution must be evaluated. In this presentation, we want to share the knowledge gained through research projects on biodegradable plastics in agricultural soil, where we both studied the degradation of biodegradable mulch under Nordic soil conditions, and the fate of other biodegradable plastics in soil amendments such as compost and biogas digestate. A two-year field experiment with biodegradable mulch (PBAT-starch and PBAT-PLA) buried in soil in mesh bags showed that also under colder climatic conditions does degradation occur, involving fragmentation already after 2 months, but that complete degradation may take 3 to 9 years, depending on soil temperature and soil organic matter content (both correlate positively with degradation rate). Accumulation is therefore likely to happen when biodegradable mulch is repeatedly used every year. A full-scale experiment with compostable plastic cups (PLA) at an industrial composting plant, where we followed their fate and conducted metagenomic analysis over 13 weeks, demonstrated the major role played by fungi for a successful degradation of PLA. However, the successful management of biodegradable plastic products largely depends on existing waste management infrastructure. Most biodegradable plastic bags, labelled as compostable and used for food waste collection do not end up in industrial composting plants in Norway, but in biogas production plants. Here, we showed that these plastic bags (Mater-Bi®) are only marginally degraded (maximum 21-33 % mass loss) during biogas production, and likely to end up in biogas digestate and then in agricultural soils, unless digestate is treated to remove plastic residues.
Authors
Melissa MagerøyAbstract
No abstract has been registered
Authors
Randika K. Makumbura Prasad Dissanayake Miyuru Gunathilake Namal Rathnayake Komali Kantamaneni Upaka RathnayakeAbstract
This study presents the first attempt in Sri Lanka to generate a forest fire risk map covering the entire country using a GIS-based forest fire index (FFI) model. The model utilized seven parameters: land use, temperature, slope, proximity to roads and settlements, elevation, and aspect. All these parameters were derived using GIS techniques with ArcGIS10.4 and QGIS3.16. Data from Remote Sensing sources, particularly the MODIS hotspot real-world dataset, were employed to gather fire count information for the year 2020. Validation was conducted through the merging hotspot technique and kernel density estimation (KDE). The research findings highlight the districts in the Central and Uva provinces, such as NuwaraEliya (10.3 km2), Kandy (2.74 km2), and Badulla (10.41 km2), as having a “very low risk" of forest fire potential. Conversely, districts like Hambanthota (0.1 km2), Kaluthara (0.04 km2), and Kurunegala (0.2 km2) exhibit a “very high risk" of forest fire potential, although it is negligible compared country's total area. Overall, the study suggests that Sri Lanka is not currently facing a significant threat of forest fires and is a “medium risk" of forest fires as 49.49% of land falls under this category. These results are of immense value to relevant authorities, including the Ministry of Wildlife and Forest Resources Conservation, in formulating effective strategies to manage and mitigate forest fire risks in the country.
Abstract
Soybean pod count is a crucial aspect of soybean plant phenotyping, offering valuable reference information for breeding and planting management. Traditional manual counting methods are not only costly but also prone to errors. Existing detection-based soybean pod counting methods face challenges due to the crowded and uneven distribution of soybean pods on the plants. To tackle this issue, we propose a Soybean Pod Counting Network (SPCN) for accurate soybean pod counting. SPCN is a density map-based architecture based on Hybrid Dilated Convolution (HDC) strategy and attention mechanism for feature extraction, using the Unbalanced Optimal Transport (UOT) loss function for supervising density map generation. Additionally, we introduce a new diverse dataset, BeanCount-1500, comprising of 24,684 images of 316 soybean varieties with various backgrounds and lighting conditions. Extensive experiments on BeanCount-1500 demonstrate the advantages of SPCN in soybean pod counting with an Mean Absolute Error(MAE) and an Mean Squared Error(MSE) of 4.37 and 6.45, respectively, significantly outperforming the current competing method by a substantial margin. Its excellent performance on the Renshou2021 dataset further confirms its outstanding generalization potential. Overall, the proposed method can provide technical support for intelligent breeding and planting management of soybean, promoting the digital and precise management of agriculture in general.
Abstract
Six seed mixtures differing in number of species and their proportion of timothy (Phleum pratense L.) were tested during three/four production (ley) years in replicated field experiments at three climatically different sites in Norway; one a mountainous inland site at 61° N (Løken) and two in coastal environments, at 61° N (Fureneset) and 65° N (Tjøtta). There were significant differences in forage accumulation (FA) and digestible forage accumulation (DFA) between the three sites. There was a significant FA decline from the third to the fourth ley year for mixtures containing timothy, but not for mixtures without timothy. Estimated interannual FA- stability was higher for timothy-based seed mixtures than for mixtures without timothy at the inland site, but FA-stability was lower at the coastal sites. In the third-year herbage of timothy-based mixtures at the inland site consisted almost solely of timothy, whereas at the coastal sites meadow fescue (Festuca pratensis Huds.) and especially tall fescue (F. arundinacea Schreb.) dominated. In seed mixtures without timothy, cocksfoot (Dactylis glomerata L.) suppressed other species at the inland site, whereas at the coastal sites, tall fescue and ryegrasses (Lolium spp.) were the dominant species in the third-year herbage. Length of growing season and site-specific growing conditions were important drivers for the observed species changes. Timothy can thus be recommended for ley establishment at sites where the growing season is short (<4 months) and plant growth is intensive, but under conditions with a longer growing season it needs to be sown in mixtures with grass species that surpass the regrowth capacity of timothy.
Abstract
Climate change with fluctuations in weather patterns, environmental concerns, and increased costs of mineral fertilizers all demand adjustment of nitrogen (N) used for forage production. The aim of the study was to investigate the effects of splitting N application in spring on dry-matter (DM) yield, crude protein (CP) content and protein quality of timothy-meadow fescue leys. The trial was conducted during two years at three locations (Kvithamar and Særheim, Norway and Länghem, Sweden). Split N application with 60 kg N ha–1 at onset of grass growth in April and 50 kg N ha–1 in May resulted in the same DM yields and CP concentrations as a single application of 110 kg N ha–1 in April in Kvithamar the first year and Særheim both years. In Länghem both years and for Kvithamar in the second year, a late application two weeks before first cut gave less DM yield than the single full application in April. Split application did not affect the contents of nonprotein N or nitrate.
Authors
Nicole P. Anderson Mohammed M. Morad Thomas G. ChastainAbstract
No abstract has been registered