Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

The spatial distribution and niche differentiation of three closely related species (Erysiphe alphitoides, Erysiphe quercicola and Erysiphe hypophylla) causing oak powdery mildew was studied at scales ranging from the European continent, where they are invasive, to a single leaf. While E. alphitoides was dominant at all scales, E. quercicola and E. hypophylla had restricted geographic, stand and leaf distributions. The large-scale distributions were likely explained by climatic factors and species environmental tolerances, with E. quercicola being more frequent in warmer climates and E. hypophylla in colder climates. The extensive sampling and molecular analyses revealed the cryptic invasion of E. quercicola in nine countries from which it had not previously been recorded. The presence of the three species was also strongly affected by host factors, such as oak species and developmental stage. Segregation patterns between Erysiphe species were observed at the leaf scale, between and within leaf surfaces, suggesting competitive effects.

To document

Abstract

The bark beetle Ips typographus carries numerous fungi that could be assisting the beetle in colonizing live Norway spruce (Picea abies) trees. Phenolic defenses in spruce phloem are degraded by the beetle's major tree-killing fungus Endoconidiophora polonica, but it is unknown if other beetle associates can also catabolize these compounds. We compared the ability of five fungi commonly associated with I. typographus to degrade phenolic compounds in Norway spruce phloem. Grosmannia penicillata and Grosmannia europhioides were able to degrade stilbenes and flavonoids faster than E. polonica and grow on minimal growth medium with spruce bark constituents as the only nutrients. Furthermore, beetles avoided medium amended with phenolics but marginally preferred medium colonized by fungi. Taken together our results show that different bark beetle-associated fungi have complementary roles in degrading host metabolites and thus might improve this insect's persistence in well defended host tissues.