Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Carrie Joy Andrew Rune Halvorsen Einar Heegaard Thomas W. Kuyper Jacob Heilmann-Clausen Irmgard Krisai-Greilhuber Claus Bässler Simon Egli Alan C. Gange Klaus Høiland Paul M. Kirk Beatrice Senn-Irlet Lynne Boddy Ulf Büntgen Håvard KauserudAbstract
Aim:Macroecological scales of species compositional trends are well documentedfor a variety of plant and animal groups, but remain sparse for fungi, despite theirecological importance in carbon and nutrient cycling. It is, thus, essential to under-stand the composition of fungal assemblages across broad geographical scales andthe underlying drivers. Our overall aim was to describe these patterns for fungiacross two nutritional modes (saprotrophic and ectomycorrhizal). Furthermore, weaimed to elucidate the temporal component of fruiting patterns and to relate theseto soil carbon and nitrogen deposition. Location:Central and Northern Europe.Methods:A total of 4.9 million fungal fruit body observations throughout Europe,collected between 1970 and 2010, were analysed to determine the two main envi-ronmental and geographical gradients structuring fungal assemblages for two mainnutritional modes, saprotrophic and ectomycorrhizal fungi. Results:Two main gradients explaining the geography of compositional patternswere identified, for each nutritional mode. Mean annual temperature (and relatedcollinear, seasonal measures) correlated most strongly with the first gradient forboth nutritional modes. Soil organic carbon was the highest correlate of the second compositional gradient for ectomycorrhizal fungi, suspected as an indicator of vege-tation- and pH-related covariates. In contrast, nitrogen deposition constituted asecond gradient for saprotrophic fungi, likely a proxy for anthropogenic pollution.Compositional gradients and environmental conditions correlated similarly whenthe data were divided into two time intervals of 1970–1990 and 1991–2010.Evidence of compositional temporal change was highest with increasing elevationand latitude. Main conclusions:Fungal assemblage patterns demonstrate clear biogeographicalpatterns that relate the nutritional modes to their main environmental correlates oftemperature, soil organic carbon and nitrogen deposition. With respect to globalchange impacts, the highest rates of compositional change by time suggest targetinghigher latitudes and elevations for a better understanding of fungal dynamics. We,finally, suggest further examination of the ranges and dispersal abilities of fungi tobetter assess responses to global change.
Authors
Milan Flach Sebastian Sippel Fabian Gans Ana Bastos Alexander Brenning Markus Reichstein Miguel D. MahechaAbstract
Combined droughts and heatwaves are among those compound extreme events that induce severe impacts on the terrestrial biosphere and human health. A record breaking hot and dry compound event hit western Russia in summer 2010 (Russian heatwave, RHW). Events of this kind are relevant from a hydrometeorological perspective, but are also interesting from a biospheric point of view because of their impacts on ecosystems, e.g., reductions in the terrestrial carbon storage. Integrating both perspectives might facilitate our knowledge about the RHW. We revisit the RHW from both a biospheric and a hydrometeorological perspective. We apply a recently developed multivariate anomaly detection approach to a set of hydrometeorological variables, and then to multiple biospheric variables relevant to describe the RHW. One main finding is that the extreme event identified in the hydrometeorological variables leads to multidirectional responses in biospheric variables, e.g., positive and negative anomalies in gross primary production (GPP). In particular, the region of reduced summer ecosystem production does not match the area identified as extreme in the hydrometeorological variables. The reason is that forest-dominated ecosystems in the higher latitudes respond with unusually high productivity to the RHW. Furthermore, the RHW was preceded by an anomalously warm spring, which leads annually integrated to a partial compensation of 54% (36% in the preceding spring, 18% in summer) of the reduced GPP in southern agriculturally dominated ecosystems. Our results show that an ecosystem-specific and multivariate perspective on extreme events can reveal multiple facets of extreme events by simultaneously integrating several data streams irrespective of impact direction and the variables' domain. Our study exemplifies the need for robust multivariate analytic approaches to detect extreme events in both hydrometeorological conditions and associated biosphere responses to fully characterize the effects of extremes, including possible compensatory effects in space and time.
Academic – Contributors to faecal water contamination in urban environments
Lisa Paruch, Adam Paruch
Abstract
Faecal contamination of water has both anthropogenic and zoogenic origins that can shade various point and nonpoint/diffuse sources of pollution. Due to the dual origin and number of sources of faecal contamination, there are immense challenges in the implementation of effective measures to protect water bodies from pollution that poses threats to human and environmental health. The main health threats refer to infections, illnesses and deaths caused by enteric pathogenicmicrobes, in particular those responsible for waterborne zoonoses. To detect and identify the origins and sources of faecal pollution simultaneously, various methods and indicators have been compiled into a comprehensivemeasuring toolbox. Molecular diagnostics using genetic markers derived from Bacteroidales 16S rRNA gene sequences are quite prevalent in the current methodological implementation for the identification of faecal contamination sources in water. For instance, a culture- and library-independent microbial source tracking toolbox combining micro- and molecular biology tests run as a three-step procedure has been implemented in Norway. Outcomes from the Norwegian studies have identified two general trends in dominance of contributors to faecal water contamination in urban environments. Firstly, there is a tendency of higher contributions from anthropogenic sources during the cold season. Secondly, the identification of the dominance of zoogenic sources in faecalwater contamination during warm periods of the year.
Abstract
The aim of the investigation was to assess and compare the environmental limits for growth cessation and floralinitiation in a range of new and established biennial-fruiting red raspberry (Rubus idaeus L.) cultivars of diverseorigin under phytotron and field conditions. The results confirmed that growth cessation and floral initiation inbiennial-fruiting red raspberry are jointly controlled by the interaction of low temperature and short days (SD).When transferred from non-inductive high temperature and long day (LD) conditions to naturally decreasingautumn daylengths at varying phytotron temperatures on 18 August, growth immediately levelled off and ceasedcompletely within 2 weeks in all cultivars at 9 °C. Serial dissections of lateral buds revealed that floral initiationsimultaneously took place. At 15 °C on the other hand, the plants continued growing and remained vegetativeuntil around 15 September when the daylength had decreased to approximately 13 h. The change to 9 °C resultedin an immediate but short-lasting floral induction response that did not bring about initiation in buds situatednear the base of the canes, as was the case at 15 °C. At 18 °C, marginal floral induction took place only in thecultivars ‘Glen Ample’, ‘Balder’ and ‘Vene’, even at photoperiods down to 10 h, whereas at 21 °C, all cultivarsgrew vegetatively regardless of daylength conditions. However, exceptions were some plants of ‘Vene’ and‘Anitra’ that initiated terminal flowers at 18 and 21 °C and flowered directly without chilling (so-called tipflowering). Although some cultivars of Northern origin ceased growing and initiated floral primordia somewhatearlier (at longer photoperiods) than those of more southerly origin, the differences were relatively minor andnot consistent (no latitudinal cline). Results obtained in the field under decreasing autumn temperature anddaylength conditions agreed closely with the results in the phytotron. We therefore conclude that results ob-tained with raspberry in properly controlled daylight phytotron experiments are generally applicable to fieldconditions.
Authors
Anders Arvesen Francesco Cherubini Gonzalo del Alamo Serrano Rasmus Astrup Michael Becidan Helmer Belbo Franziska Goile Tuva Grytli Geoffrey Guest Carine Lausselet Per Kr. Rørstad Line Rydså Morten Seljeskog Øyvind Skreiberg Veena Sajith Vezhapparambu Anders Hammer StrømmanAbstract
Climate impacts of forest bioenergy result from a multitude of warming and cooling effects and vary by location and technology. While past bioenergy studies have analysed a limited number of climatealtering pollutants and activities, no studies have jointly addressed supply chain greenhouse gas emissions, biogenic CO2 fluxes, aerosols and albedo changes at high spatial and process detail. Here, we present a national-level climate impact analysis of stationary bioenergy systems in Norway based on wood-burning stoves and wood biomass-based district heating. We find that cooling aerosols and albedo offset 60–70% of total warming, leaving a net warming of 340 or 69 kg CO2e MWh−1 for stoves or district heating, respectively. Large variations are observed over locations for albedo, and over technology alternatives for aerosols. By demonstrating both notable magnitudes and complexities of different climate warming and cooling effects of forest bioenergy in Norway, our study emphasizes the need to consider multiple forcing agents in climate impact analysis of forest bioenergy.
Authors
Pablo P. Leal Catriona L. Hurd Sylvia G. Sander Evelyn Armstrong Pamela A. Fernández Tim J. Suhrhoff Michael RoledaAbstract
Ocean warming (OW), ocean acidification (OA) and their interaction with local drivers, e.g., copper pollution, may negatively affect macroalgae and their microscopic life stages. We evaluated meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida exposed to a factorial combination of current and 2100-predicted temperature (12 and 16 °C, respectively), pH (8.16 and 7.65, respectively), and two copper levels (no-added-copper and species-specific germination Cu- EC50). Meiospore germination for both species declined by 5–18% under OA and ambient temperature/ OA conditions, irrespective of copper exposure. Germling growth rate declined by >40%·day−1, and gametophyte development was inhibited under Cu-EC50 exposure, compared to the no-added-copper treatment, irrespective of pH and temperature. Following the removal of copper and 9-day recovery under respective pH and temperature treatments, germling growth rates increased by 8–18%·day−1. The exception was U. pinnatifida under OW/OA, where growth rate remained at 10%·day−1 before and after copper exposure. Copper-binding ligand concentrations were higher in copper-exposed cultures of both species, suggesting that ligands may act as a defence mechanism of kelp early life stages against copper toxicity. Our study demonstrated that copper pollution is more important than global climate drivers in controlling meiospore development in kelps as it disrupts the completion of their life cycle.
Authors
Jon Aars Tiago A. Marques Karen Lone Magnus Andersen Øystein Wiig Ida Marie Luna Fløystad Snorre Hagen Stephen T. BucklandAbstract
No abstract has been registered
Authors
Aaron M. Shew L. Lanier Nalley Heather A. Snell Rodolfo M. Jr. Nayga Bruce L. DixonAbstract
CRISPR gene-editing has major implications for agriculture and food security. However, no studies have evaluated the public acceptance and valuation of CRISPR-produced food. As such, we conducted a multi-country assessment of consumers’ willingness-to-consume (WTC) and willingness-to-pay (WTP) for CRISPR-produced food compared to conventional and genetically modified (GM) foods, respectively. In the USA, Canada, Belgium, France, and Australia, 56, 47, 46, 30, and 51% of respondents, respectively, indicated they would consume both GM and CRISPR food. We also found that biotechnology familiarity and perceptions of safety were the primary drivers for WTC CRISPR and GM food. Moreover, respondents valued CRISPR and GM food similarly – substantially less than conventional food – which could be detrimental for meeting future food demand.
Authors
Gregory Taff Anniken Førde Marit Aure Tone Magnussen Torill Nyseth Yang ShaoAbstract
No abstract has been registered