Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Due to the potential for land-use–land-cover change (LULCC) to alter surface albedo, there is need within the LULCC science community for simple and transparent tools for predicting radiative forcings (ΔF) from surface albedo changes (Δαs). To that end, the radiative kernel technique – developed by the climate modeling community to diagnose internal feedbacks within general circulation models (GCMs) – has been adopted by the LULCC science community as a tool to perform offline ΔF calculations for Δαs. However, the codes and data behind the GCM kernels are not readily transparent, and the climatologies of the atmospheric state variables used to derive them vary widely both in time period and duration. Observation-based kernels offer an attractive alternative to GCM-based kernels and could be updated annually at relatively low costs. Here, we present a radiative kernel for surface albedo change founded on a novel, simplified parameterization of shortwave radiative transfer driven with inputs from the Clouds and the Earth's Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products. When constructed on a 16-year climatology (2001–2016), we find that the CERES-based albedo change kernel – or CACK – agrees remarkably well with the mean kernel of four GCMs (rRMSE = 14 %). When the novel parameterization underlying CACK is applied to emulate two of the GCM kernels using their own boundary fluxes as input, we find even greater agreement (mean rRMSE = 7.4 %), suggesting that this simple and transparent parameterization represents a credible candidate for a satellite-based alternative to GCM kernels. We document and compute the various sources of uncertainty underlying CACK and include them as part of a more extensive dataset (CACK v1.0) while providing examples showcasing its application.

Abstract

Although supporting high productivity, modern agriculture caused a long-term impact on natural trophic interactions, releasing pests from pressure linked with their natural enemies. Studies have demonstrated that volatiles released under herbivory can recruit natural enemies of pests from a distance. Here, we used a novel biodegradable formulation loaded with induced and food-signalling volatiles with the aim to attract the green lacewing, Chrysoperla carnea, and increase biological control of two cereal aphids Sitobion avenae and Rhopalosiphum padi. The new product consisted of a biodegradable matrix loaded with a 3-component blend of methyl salicylate, acetic acid and phenylacetaldehyde in a 1:1:1 ratio. Field experiments were carried out in a barley field in Norway. Single plants were provided with a 1 ml dollop of the new formulation or with a standard polyethylene emballage dispenser loaded with the same amount of compounds. The number of lacewing eggs and larvae as well as the attraction of additional natural enemies was recorded both on the treated and surrounding plants by visual inspection. At the same time, an assessment of aphid infestation was carried out. A higher local density of lacewing adults, eggs and larvae over an 8-week period was observed for both the standard and the biodegradable formulation in comparison with untreated plants. Chemical analysis of the volatiles emitted from the slow-release matrix showed an active emission of the blend over at least a 4-week period. Significant biological control of aphid was measured in the vegetation surrounding the odour source. Both aphid populations were significantly reduced, with no difference between the new and the standard treatment. While coccinellids and hoverflies were not affected by the treatment, a lower number of mummified aphids were measured in some of the treated plants in comparison with untreated ones. Results show the potential for semiochemical-based targeted attraction of lacewings to enhance biological control of aphids in a prevalent monoculture field setting. Additional studies are required to support the development of practical integrated pest management guidelines, including optimization of application density, threshold value for pest and natural enemies and practical recommendation for the establishment of non-crop vegetation within and around the crop.

Abstract

Infections of Neonectria ditissima, the cause of European fruit tree canker, may be initiated during propagation. In a survey of 19 commercial apple orchards in southern Norway in the year of planting or the following year, the graft-union area of 15,270 trees was examined. The disease was found in 53% of the orchards, at a low incidence (<10%) with two exceptions (13 and 42%). Scion wood from mother trees with no, a few or several cankers were used to propagate trees that were surveyed for up to 38 months. In total 20 out of 1116 (1.8%) trees developed canker. The higher the number of cankers was on the mother trees, the higher was the number of trees developing canker after grafting. Infections developed on both cultivars (Discovery, Summerred) and all three rootstocks (Antonovka, B9, M9), but more so on grafted than T-budded trees, and more in 2015 than in 2014. When the scion wood was inoculated at the time of T-budding or grafting, disease development went faster and to a higher incidence on T-budded (94%) than on grafted trees (50%). Dipping the scion wood end in a spore suspension prior to grafting resulted in more infections than when a suspension droplet was placed on the bud and bark surface of the scion wood after grafting. The present investigation documents that scion wood may harbour inoculum of N. ditissima. Furthermore, infections may be initiated at time of propagation, and management practices of both scion wood production and nurseries should encounter that fact.

To document

Abstract

The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.

To document See dataset

Abstract

Dairy products are often considered challenging for health due to their saturated fatty acid content, yet they also provide beneficial nutrients, some unique to ruminants. The degree of fat saturation is influenced by cows’ diets; grazing pasture enhances unsaturated fatty acids in milk compared with conserved forages. These benefits can be partially mimicked by feeding oilseeds and here we consider the impact on milk composition in a 2 × 2 trial, feeding rapeseed to both conventional and organic cows, finding very differing lipid metabolism in the 4 experimental groups. For milk fat, benefits of organic rather than conventional management (+39% PUFA, +24% long chain omega-3 and +12% conjugated linoleic acid (CLA)) appear complementary to those from feeding rape (+43% MUFA, +10% PUFA, +40% CLA), combining to produce milk 16% lower SFA and higher in MUFA (43%), PUFA (55%) and CLA (59%). Organic and rape feeding provide less omega-3 PUFA than the conventional and control diets, yet contrary to expectations, together they almost doubled (+94%) the omega-3 concentration in milk, implying a 3.8 fold increase in net transfer from diet into milk. Organic and rape feeding also gave lower trace-elements and antioxidants in milk. Greater understanding of these phenomena might enhance the sustainability of dairying.

To document

Abstract

Boreal and temperate forests cover a large part of the Earth. Forest ecosystems are a key focus for research because of their role in the carbon (C) balance and cycle. Increasing atmospheric temperatures, different disturbances (fire, storm and insects) and forest management (clear-cutting) will change considerably the C status of forest ecosystems. Using the eddy covariance (EC) method, we can define interactions among environmental factors that influence the C-balance and whether a forest ecosystem is functioning as a C-sink or C-source or possibly is C-neutral. In our review of published studies of different disturbances, we found that most of the post-disturbance studies based on EC method focused on the effects of forest fire and clear-cutting, only a few studies studies focused on the effects of storms and insects. Generally a forest is a C-source until several years after disturbance and then a forest is able to absorb C and become a C-sink. Recovery to C-sink status required up to 20 years in clear-cut areas. Recovery following wildfire disturbance was much longer, possibly more than 50 years. Recovery to C-sink status required approximately 5 years after storm and insect outbreak, however we can not predict overall recovery period because of the missing data.