Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

In the Pacific Northwest, forest roads have the potential to cause significant environmental degradation, especially to water resources due to increased sediment production. The goal of this research is to improve the understanding of road degradation during hauling by improving our understanding of the aggregate degradation process. We correlate the wear rates to standard material property tests that may allow for improved prediction of the impacts from forest roads based on the selection of aggregate surfacing. Finally, we determine the changes in stress distribution between the subgrade and aggregate interface. High-, medium-, and low-quality aggregates were used from three quarries in western Oregon for this project. These aggregates are indicative of the range of materials used on forest roads in the region. Two material property tests, namely the Los Angeles (LA) abrasion and micro-Deval tests, were used to determine their ability to predict aggregate performance during hauling by relating values for aggregate wear to these aggregate properties. Eighteen nonwoven geotextile bags were created, measuring 60 cm (two-feet long) and 20 cm (eight inches) in diameter, with a pore size equivalent to a 0.149 mm (# 100) sieve. They were filled with a known quantity and particle size distribution of aggregate and embedded into a newly constructed forest road. Stress gages were installed in the road surface between the aggregate and subgrade levels to record the changes in stress at the subgrade level. Samples were subjected to three levels of traffic (500, 950, and 1500 passes) using a loaded dump-truck that had a steering axle and one tandem drive axle, weighing 25,038 kg or 55,200 lb. The results showed that less breakage occurred with the medium- and high-quality aggregates than the low-quality aggregate. There was a correlation between the material property test (either the micro-Deval or the LA abrasion test) and the fine index, indicating the predictability of these tests in terms of aggregate performance. Finally, the higher quality aggregate was able to better distribute the stresses from the wheel better than the lower quality aggregate and was able to reduce the stress reaching the subgrade. Although the results are limited to the three types of rock used in this study, they indicate the ability of the high-quality aggregate to lessen the environmental impacts from forest roads.

Abstract

Optimizing phosphorus (P) application to agricultural soils is fundamental to crop production and water quality protection. We sought to relate soil P tests and P sorption characteristics to both crop yield response to P application and environmentally critical soil P status. Barley (Hordeum vulgare L.) was grown in pot experiments with 45 soils of different P status. Half the pots were fertilized at 20 kg P ha−1, and half received no P. Soils were extracted with ammonium lactate, sodium bicarbonate (Olsen P), dilute salt (0.0025 M CaCl2), and diffusive gradient in thin films. Soil adsorption coefficients were determined using the Freundlich isotherm equation, and the degree of P saturation was determined from both oxalate and ammonium lactate extracted Fe, Al, and P. All soil P analyses showed a nonlinear and significant relationship with yield response to P application, and all analyses manifested a threshold value above which no P response was observed. For the commonly used ammonium lactate test, inclusion of Al and Fe improved prediction of plant‐available soil P. The threshold for yield response coincided with the environmentally critical values determined from the degree of P saturation. Results support the conclusion that soil P levels for which no P application is needed also have elevated risk of P loss to runoff.

To document

Abstract

This study evaluated the suitability of different airborne laser scanning (ALS) datasets for the prediction of forest canopy fuel parameters in managed boreal forests in Finland. The ALS data alternatives were leaf-off and leaf-on unispectral and leaf-on multispectral data, alone and combined with aerial images. Canopy fuel weight, canopy base height, biomass of living and dead trees, and height and biomass of the understory tree layer were predicted using regression analysis. The considered categorical forest parameters were dominant tree species, site fertility and vertical forest structure layers. The canopy fuel weight was modeled based on crown biomass with an RMSE% value of 20–30%. The canopy base heights were predicted separately for pine and spruce stands with satisfactory results the RMSE% values being 9–10% and 15–17%, respectively. Following the initial classification of the existence of an understory layer (with kappa-values of 0.47–0.53), the prediction of understory height performed well (RMSE% 20–25%) but the understory biomass was predicted with larger RMSE% values (about 60–70%). Site fertility was classified with kappa-values of 0.5–0.6. The most accurate results were obtained using multispectral ALS data, although the differences between the datasets were minor.

Abstract

The invasive slug Arion vulgaris (Gastropoda: Arionidae) is an agricultural pest and serious nuisance in gardens of Central and Northern Europe. To investigate if the success of A.vulgaris in Norway can be attributed to a release from parasites, we compared the prevalence and parasite load of nematodes and trematodes in A. vulgaris to that of three native gastropod species, A. circumscriptus, A. fasciatus and Arianta arbustorum, in SE Norway. We found A. vulgaris to have the highest prevalence of both parasite groups (49% nematodes, 76% trematodes), which does not support the parasite release hypothesis, but rather points to A. vulgaris as a potentially important intermediate host of these parasites. For trematodes the number of individuals (parasite load) did not differ among host species; for nematodes it was higher in A. vulgaris than A. fasciatus. To further compare the parasite susceptibility of the surveyed gastropods, we exposed A. vulgaris, A. fasciatus, and A. arbustorum to a slug parasitic nematode, Phasmarhabditis hermaphrodita, in the laboratory. This nematode is commercially available and widely used to control A. vulgaris. The non-target species A. fasciatus was most affected, with 100% infection, 60% mortality and significant feeding inhibition. A. vulgaris was also 100% infected, but suffered only 20% mortality and little feeding inhibition. The load of P. hermaphrodita in infected specimens was not significantly different for the two Arion species (median: 22.5 and 45, respectively). Only 35% of A. arbustorum snails were infected, none died, and parasite load was very low (median: 2). However, they showed a near complete feeding inhibition at highest nematode dose, and avoided nematode-infested soil. Our results indicate that A. vulgaris may be less susceptible to P. hermaphrodita than the native A. fasciatus, and that non-target effects of applying this nematode in fields and gardens should be further investigated.

Abstract

No abstract has been registered

To document

Abstract

Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short‐lived model plants such as Arabidopsis, but little is known about this phenomenon in long‐lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48‐year‐old Norway spruce (Picea abies) trees to mass attack by a tree‐killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus‐inoculated trees and MeJA‐treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91‐fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus‐inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA‐treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.