Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2020
Abstract
No abstract has been registered
Authors
Claire CoutrisAbstract
No abstract has been registered
Authors
Katrin M. Lindroth Astrid Johansen Viveca Båverud Johan Dicksved Jan Erik Lindberg Cecilia E. MüllerAbstract
Free faecal liquid (FFL) is a condition in horses where faeces are voided in one solid and one liquid phase. The liquid phase contaminates the tail, hindlegs and area around the anus of the horse, resulting in management problems and potentially contributing to impaired equine welfare. The underlying causes are not known, but anecdotal suggestions include feeding wrapped forages or other feed- or management-related factors. Individual horse factors may also be associated with the presence of FFL. This study, therefore, aimed to characterize horses showing FFL particularly when fed wrapped forages, and to map the management and feeding strategies of these horses. Data were retrieved by a web-based survey, including 339 horses with FFL. A large variety of different breeds, ages, disciplines, coat colours, housing systems and feeding strategies were represented among the horses in the study, meaning that any type of horse could be affected. Respondents were asked to indicate if their horse had diminished signs of FFL with different changes in forage feeding. Fifty-eight percent (n = 197) of the horse owners reported diminished signs of FFL in their horses when changing from wrapped forages to hay; 46 (n = 156) of the horse owners reported diminished signs of FFL in their horses when changing from wrapped forages to pasture; 17% (n = 58) reported diminished signs of FFL when changing from any type of forage batch to any other forage. This indicated that feeding strategy may be of importance, but cannot solely explain the presence of FFL. The results also showed that the horses in this study had a comparably high incidence of previous colic (23%, n = 78) compared to published data from other horse populations. In conclusion, the results showed that FFL may affect a large variety of horse types and that further studies should include detailed data on individual horse factors including gastrointestinal diseases as well as feeding strategies, in order to increase the chance of finding causes of FFL.
Authors
Ivan Paponov Martina Paponov Paolo Sambo Christof EngelsAbstract
Sub-optimal nitrogen (N) conditions reduce maize yield due to a decrease in two sink components: kernel set and potential kernel weight. Both components are established during the lag phase, suggesting that they could compete for resources during this critical period. However, whether this competition occurs or whether different genotypic strategies exist to optimize photoassimilate use during the lag phase is not clear and requires further investigation. We have addressed this knowledge gap by conducting a nutrient solution culture experiment that allows abrupt changes in N level and light intensity during the lag phase. We investigated plant growth, dry matter partitioning, non-structural carbohydrate concentration, N concentration, and 15N distribution (applied 4 days before silking) in plant organs at the beginning and the end of the lag phase in two maize hybrids that differ in grain yield under N-limited conditions: one is a nitrogen-use-efficient (EFFI) genotype and the other is a control (GREEN) genotype that does not display high N use efficiency. We found that the two genotypes used different mechanisms to regulate kernel set. The GREEN genotype showed a reduction in kernel set associated with reduced dry matter allocation to the ear during the lag phase, indicating that the reduced kernel set under N-limited conditions was related to sink restrictions. This idea was supported by a negative correlation between kernel set and sucrose/total sugar ratios in the kernels, indicating that the capacity for sucrose cleavage might be a key factor defining kernel set in the GREEN genotype. By contrast, the kernel set of the EFFI genotype was not correlated with dry matter allocation to the ear or to a higher capacity for sucrose cleavage; rather, it showed a relationship with the different EFFI ear morphology with bigger kernels at the apex of the ear than in the GREEN genotype. The potential kernel weight was independent of carbohydrate availability but was related to the N flux per kernel in both genotypes. In conclusion, kernel set and potential kernel weight are regulated independently, suggesting the possibility of simultaneously increasing both sink components in maize.
Authors
Bente FøreidAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Eduardo Collado Carles Castano Jose Antonio Bonet Andreas Hagenbo Juan Martínez de Aragon Sergio de-MiguelAbstract
No abstract has been registered
Abstract
During June 2019, an outbreak of campylobacteriosis occurred in Askøy, an island northwest of Bergen, Norway. According to the publicly available records, over 2000 residents fell ill and 76 were hospitalised, and two deaths were suspected to be associated with Campylobacter infection. By investigating the epidemic pattern and scope, an old caved drinking water holding pool was identified that had been faecally contaminated as indicated by the presence of Escherichia coli (E. coli). Furthermore, Campylobacter bacteria were found at several points in the water distribution system. In the escalated water health crisis, tracking down the infectious source became pivotal for the local municipality in order to take prompt and appropriate action to control the epidemic. A major task was to identify the primary faecal pollution source, which could further assist in tracking down the epidemic origin. Water from the affected pool was analysed using quantitative microbial source tracking (QMST) applying host-specific Bacteroidales 16S rRNA genetic markers. In addition, Campylobacter jejuni, Enterococcus faecalis, Clostridium perfringens and Shiga toxin-producing E. coli were detected. The QMST outcomes revealed that non-human (zoogenic) sources accounted predominantly for faecal pollution. More precisely, 69% of the faecal water contamination originated from horses.
Authors
Shafik Hebous Zhiyang Jia Knut Løyland Thor Olav Thoresen Arnstein ØvrumAbstract
No abstract has been registered
Authors
Shelemia Nyamuryekung'e Andres F. Cibils Richard Estell Dawn VanLeeuwen Caitriana M. Steele Octavio Roacho Estrada Felipe A. Rodriguez Almeida Alfredo L. Gonzalez Sheri SpiegalAbstract
No abstract has been registered