Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2021
Authors
Callum Aidan Stephen Hill Mark Hughes Daniel GudsellAbstract
The modification of wood involves extra processing over and above what is associated with un-modified material and this will involve an associated environmental impact. There is now a body of information on this due to the presence in the public domain of a number of environmental product declarations (EPDs). Using these data, it is possible to determine what the extra impact associated with the modification is. The process of modification results in a life extension of the product, which has implications regarding the storage of sequestered atmospheric carbon in the harvested wood products (HWP) materials’ pool and also extended maintenance cycles (e.g., longer periods between applying coatings). Furthermore, the life extension benefits imparted by wood modification need to be compared with the use of other technologies, such as conventional wood preservatives. This paper analysed the published data from a number of sources (peer-reviewed literature, published EPDs, databases) to compare the impacts associated with different modification technologies. The effect of life extension was examined by modelling the carbon flow dynamics of the HWP pool and determining the effect of different life extension scenarios. Finally, the paper examined the impact of different coating periods, and the extensions thereof, imparted by the use of different modified wood substrates.
Abstract
As the demand for proteins increases with growing populations, farmed seaweed is a potential option for use directly as an ingredient for food, feed, or other applications, as it does not require agricultural areas. In this study, a life cycle assessment was utilised to calculate the environmental performance and evaluate possible improvements of the entire value chain from production of sugar kelp seedings to extracted protein. The impacts of both technical- and biological factors on the environmental outcomes were examined, and sensitivity and uncertainty analyses were conducted to analyse the impact of the uncertainty of the input variables on the variance of the environmental impact results of seaweed protein production. The current production of seaweed protein was found to have a global warming potential (GWP) that is four times higher than that of soy protein from Brazil. Further, of the 23 scenarios modelled, two resulted in lower GWPs and energy consumption per kg of seaweed protein relative to soy protein. These results present possibilities for improving the environmental impact of seaweed protein production. The most important variables for producing seaweed protein with low environmental impact are the source of drying energy for seaweed, followed by a high protein content in the dry matter, and a high dry matter in the harvested seaweed. In the two best scenarios modelled in this study, the dry matter content was 20% and the protein content 19.2% and 24.3% in dry matter. This resulted in a lower environmental impact for seaweed protein production than that of soy protein from Brazil. These scenarios should be the basis for a more environmental protein production in the future.
Abstract
The environmental control of dormancy and its relation to flowering and runner formation is poorly understood in everbearing (EB) strawberry cultivars. We studied the topic by growing plants of the seed-propagated F1-hybrid ‘Delizzimo’ and the runner-propagated ‘Favori’ cultivar in daylight phytotron compartments under short day (SD) and long day (LD) conditions at temperatures of 6, 16 or 26 °C for 5 and 10 weeks. This was followed by forcing at 20 °C and 20-h photoperiod for 10 weeks with and without preceding chilling at 2 °C for 6 weeks. The results showed that dormancy in EB strawberry is regulated by a complex interaction of temperature, photoperiod and chilling in much the same way as known for seasonal flowering (SF) cultivars. Surprisingly, the EB cultivars exhibited the same SD dormancy induction response as SF cultivars, despite their opposite photoperiodic flowering requirements. However, at 26 °C the EB cultivars developed partial dormancy also under LD conditions. As known for SF cultivars, none of the EB cultivars became dormant at 6 °C regardless of daylength conditions, whereas they were increasingly sensitive to SD dormancy induction at intermediate and high temperatures. Similar to SF cultivars, the EB cultivars needed exposure to SD and relatively high temperatures for at least 10 weeks for attainment of the semi-dormant state that is typical for strawberry in general. As reported for SF cultivars, there was a close interrelation between the control of flowering, runner formation and dormancy also in the EB cultivars. ‘Favori’ had an obligatory LD requirement for flowering at 26 °C and was almost day neutral at 16 °C, while ‘Delizzimo’ behaved as a quantitative LD plant at both temperatures, and both cultivars were completely day neutral at 6 °C. Except for the stricter LD control of flowering in ‘Favori’, the overall environmental responses were quite similar in the two genetically distant cultivars. Chilling for six weeks at 2 °C was adequate for complete reversal of the constrained elongation of leaf petioles and flower trusses in dormant plants, but had little or no effect on the degree of flowering and runner formation.
Authors
Min-Rui Wang Wenlu Bi Mukund R. Shukla Li Ren Zhibo Hamborg Dag-Ragnar Blystad Praveen K. Saxena Qiao-Chun WangAbstract
Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.
Authors
Anita SønstebyAbstract
No abstract has been registered
Authors
Sverre KobroAbstract
No abstract has been registered
Authors
Claire R. Peart Sergio Tusso Saurabh D. Pophaly Fidel Botero-Castro Chi-Chih Wu David Aurioles-Gamboa Amy B. Baird John W. Bickham Jaume Forcada Filippo Galimberti Neil J. Gemmell Joseph I. Hoffman Kit M. Kovacs Mervi Kunnasranta Christian Lydersen Tommi Nyman Larissa Rosa de Oliveira Anthony J. Orr Simona Sanvito Mia Valtonen Aaron B.A. Shafer Jochen B.W. WolfAbstract
No abstract has been registered
Authors
Hang Su Andre van Eerde Hege Særvold Steen Inger Heldal Sissel Haugslien Irene Ørpetveit Stefanie Caroline Wüstner Makoto Inami Marie Løvoll Espen Rimstad Jihong Liu ClarkeAbstract
Cardiomyopathy syndrome (CMS) is a severe cardiac disease occurring in the grow-out sea phase of farmed Atlantic salmon with approximately 100 outbreaks annually in Norway. Piscine myocarditis virus (PMCV) is believed to be the causative agent of CMS. There is no vaccine available to control CMS, partially because PMCV withstands propagation in known cell cultures. In the present study, we selected the putative capsid protein of PMCV as the candidate antigen for immunization experiments and produced it in the plant Nicotiana benthamiana by transient expression. The recombinant PMCV antigen formed virus-like particles (VLPs). To evaluate the efficacy of the plant made VLP vaccine, a PMCV infection model was established. In an experimental salmon vaccination trial, the VLP vaccine triggered innate immunity, and indicative but not significant inhibition of viral replication in heart, spleen and kidney tissues was observed. Similarly, a reduction of inflammatory lesions in cardiomyocytes and subendocardial infiltration by mononuclear leukocytes were observed. Therefore, there was no difference in efficacy or immune response observed post the plant made PMCV VLP antigen vaccination. Taken together, this study has demonstrated that plant made VLP antigens should be investigated further as a possible platform for the development of PMCV antigens for a CMS vaccine.
Abstract
No abstract has been registered