Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

Pollen represents a reward for pollinators and is a key element in plant–insect interactions, especially in apples, which are entomophilous species and require cross-pollination to produce economically valuable yields. The aim of this study was to analyze the chemical content of the pollen in 11 apple cultivars (‘Red Aroma’, ‘Discovery’, ‘Summerred’, ‘Rubinstep’, ‘Elstar’, ‘Dolgo’, ‘Professor Sprenger’, ‘Asfari’, ‘Eden’, ‘Fryd’ and ‘Katja’) grown in Norway and try to establish a relationship between them and insect attractiveness. In the applied chemical analysis, 7 sugars and sugar alcohols, 4 organic acids, 65 phenolic compounds, 18 hydroxycinnamic acid amides (phenylamides), a large number of polypeptides with a molecular weight of 300 kDa to <6.5 kDa, lipids, carotenoids, starch, pectin and cellulose were determined. The crab apples ‘Dolgo’ and ‘Professor Sprenger’, which are used as pollenizers in commercial orchards, had the highest level of sucrose, total polyphenol content (prevent oxidative damages in insects), antioxidant capacity, hydroxybenzoic acids and derivatives, quercetin and derivatives, dihyrochalcone, epicatechin, putrescine derivates, and proteins with molecular weight 66–95 kDa and >95 kDa, which made them interesting for insect pollenizers. Only the pollen of the crab apples contained quercetin-3-O-(2″-O-malonyl)-hexoside, which can be used as a marker for the apple species Malus sylvestris (L.) Mill. Apple floral pollen is a rich source of bioactive components and can be used to prevent and/or cure diseases or can be included in diets as a “superfood”.

To document

Abstract

Background Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. Results The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. Conclusions The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms. Keywords Amplicon sequencing, AmpSeq, Extreme resistance, Hyoscyamus niger, PacBio, Physalis peruviana, PVY, Solanum

To document

Abstract

Stress on tree vitality is expected to increase due to climatic extremes in European forests. The decline in vitality of European beech (Fagus sylvatica L.) that has been reported recently, makes it necessary to rethink its future adaptive potential under ongoing climate change. Here we performed a pan European assessment of defoliation chronologies on 414 ICP Forests Level I beech plots, between 1995 and 2022. We investigated the temporal trends, spatial variation, tree-specific patterns as well as climate sensitivity of defoliation at plot level. Various trends emerged and we delineated the plots accordingly: 1) increasing defoliation trends indicating declining vitality (categorized as t1 plots); 2) no trends indicating stable crown condition (t2 plots); 3) decreasing defoliation trends indicating increase in vitality (t3 plots). Spatial variation was found among these plots but no regional grouping or clustering. Tree-specific patterns on 14 % plots were observed, characterized by an expressed population signal of < 0.85, indicating high inter-tree variability. Defoliation was found to be sensitive to climatic variables, mainly to temperature but also precipitation, albeit only for a small percentage of plots. Sensitivity was indicated by statistically significant (p<0.05) Pearson’s correlation coefficients. Moreover, this response depended on month of the year. Climate sensitivity of defoliation also varied across space and plots of different trend categories. It also differed along monthly water balance gradient, further indicating the role of site-specific water availability in mediating the responses to climatic variables. Our study provided basis for long-term defoliation studies, and is a crucial building block to assess beech vitality under potentially changing future climate. Furthermore, such studies will provide more insights into changes in sensitivity and adequate future sites for beech.

To document

Abstract

Aim Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location Global. Time period 1990–2017. Major taxa studied Trees. Methods We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation. Main conclusions By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large-scale management and conservation practices.

To document

Abstract

Persistence of standing dead trees (snags) is an important determinant for their role for biodiversity and dead wood associated carbon fluxes. How fast snags fall varies widely among species and regions and is further influenced by a variety of stand- and tree-level factors. However, our understanding of this variation is fragmentary at best, partly due to lack of empirical data. Here, we took advantage of the accruing time series of snag observations in the Finnish, Norwegian and Swedish National Forest Inventories that have been followed in these programs since the mid-1990s. We first harmonized observations from slightly different inventory protocols and then, using this harmonized dataset of ca. 43,000 observations that had a consistent 5-year census interval, we modelled the probability of snags of the main boreal tree species Pinus sylvestris, Picea abies and Betula spp. falling, as a function of tree- and stand-level variables, using Bayesian logistic regression modelling. The models were moderately good at predicting snags remaining standing or falling, with a correct classification rate ranging from 68% to 75% among species. In general, snag persistence increased with tree size and climatic wetness, and decreased with temperature sum, advancing stage of decay, site productivity and disturbance intensity (mainly harvesting). Synthesis and applications: The effect of harvesting demonstrates that an efficient avenue to increase the amount of snags in managed forests is protecting them during silvicultural operations. In the warmer future, negative relationship between snag persistence and temperature suggests decreasing the time snags remain standing and hence decreasing habitat availability for associated species. As decomposition rates generally increase after fall, decreasing snag persistence also implies substantially faster release of carbon from dead wood.