Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Local food is increasing in popularity. The more local, the better. However, selling local food is much more demanding than many may be aware of. Fortunately, new digital solutions are on the way.

To document

Abstract

Landscape ecology is repeatedly described as an applied science that can help reduce the negative effects of land-use and land-use changes on biodiversity. However, the extent to which landscape ecology is in fact contributing to planning and design processes is questioned. The aim of this paper is to investigate if and how landscape ecology can be integrated in a planning and design process, and to uncover possible problems that, e.g., landscape architects and planners, may face in such processes. Our conclusion, based on a case study from Asker municipality, Norway, is that such a landscape ecological approach has a lot to offer. However, it is difficult to exploit the potential fully for different reasons, e.g., biodiversity information tends to be specialized, and not easily used by planners and designers, and landscape ecological principles need an adaptation process to be applicable in a real-world situation. We conclude that for the situation to improve, landscape ecologists need to ease this process. In addition, we recommend collaboration across disciplinary boundaries, preferably with a common design concept as a foundation.

To document

Abstract

The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with “humanized” N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.