Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

High yields are needed for profitability under shielded strawberry production. June bearing strawberry cultivars require a short day (SD) period in order to initiate generative growth. Nitrogen availability going into the SD-period, as well as during the period, can affect the process. To increase the knowledge about optimized nitrogen fertilizing, an experiment was set up under controlled conditions. Strawberry plants of the cultivar ‘Sonata’ were grown under combinations of different levels of nitrogen to evaluate its effect on timing on growth, flowering time and the number of flowers produced. The result showed that the time for opening of the first flower, the interaction between the pre-SD nitrogen level and the nitrogen level applied during the SD had the highest impact, and that low levels pre-SD flowered earlier. The number of flowers produced was affected by both pre-SD and SD nitrogen level as well as its interactions. Low nitrogen levels throughout had low yield potential while when low pre-SD nitrogen level was followed by high levels during SD, the yield increased.

To document

Abstract

Lingonberries (Vaccinium vitis-idaea L.) from two locations, northern (69°N, 18°E) and southern (59°N, 10°E) Norway, were grown under controlled conditions in a phytotron at two temperatures (9 and 15 °C) to study the effects of the ripening temperature and origin on the chemical composition of the berries. The concentrations of phenolic compounds, sugars, and organic acids as well as the profile of volatile organic compounds (VOCs) were determined using chromatographic and mass spectrometric methods. Five anthocyanins, eleven flavonols, eight cinnamic acid derivatives, three flavan-3-ols, three sugars, three organic acids, and 77 VOCs were identified, of which 40 VOCs had not previously been reported in lingonberries. Berries from both locations, were found to have higher contents of anthocyanins and cinnamic acid derivatives when ripened at lower temperature (9 °C), compared to the higher temperature (15 °C). Lingonberries of northern origin had a different VOC profile and higher contents of anthocyanins and organic acids than berries originating from the south. Lingonberries from the northern location also had higher proportions of cyanidin-3-O-glucoside and cyanidin-3-O-arabinoside than lingonberries from the southern location. The results show that the composition of lingonberries is influenced by both the environment and the origin of the plants, with phenolic compounds mainly influenced by the growth temperature and VOCs mainly influenced by plant origin.

To document

Abstract

Nutrient uptake and transport depend on the root system of a tree. Various apple rootstock genotypes may interact fruit tree nutrition. In 2017, two multi-location apple rootstock trials were established at 16 sites in 12 European countries. The evaluations are performed by members of the EUFRIN (European Fruit Research Institute Network) Apple & Pear Variety & Rootstock Testing Working Group. Following rootstocks are included in the tests: G.11, G.41, G.202 and G.935 (US), EM_01, EM_02, EM_03, EM_04, EM_05 and EM_06 (UK), 62-396-B10® (Russia), P 67 (Poland), NZ-A, NZ-B, NZ-C and NZ-D (New Zealand) and Cepiland-Pajam®2 as control. The effect of rootstocks on the mineral content of leaf and fruit was studied at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2019-2020. The leaf and fruit mineral concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and leaf mineral content of copper (Cu), zinc (Zn), iron (Fe), manganese (Mn) and boron (B) were measured. Significant rootstock effect was established on leaf P, Mg, Zn, Mn, B, and fruit Ca and Mg content. Rootstocks EM_01 and G.41 were the most efficient in leaf mineral uptake, while G.935 had the lowest content of all leaf macro nutrients. Rootstocks EM_06 and P 67 were the most efficient in fruit mineral uptake, while EM_02 had the lowest content of three nutrients. Current research reveals differences among rootstocks and their capacity to absorb separate minerals and enables creation of rootstock specific nutrition management.

To document

Abstract

The aim was to explore the impact of temperature during seed development on yield performance and seed quality in faba bean when grown at cool temperatures representative for high latitude regions. Two varieties, an early and a medium late maturing, were grown in climate chambers with three temperature regimes (day/night temperatures of 14°C/12°C, 19°C/12°C, and 24°C/12°C) from onset of flowering to maturation. Yield components were recorded, and the accumulation of protein, starch, and low molecular weight carbohydrates including the raffinose family oligosaccharides was followed during the accumulation phase until physiological maturity. The lower temperature regimes strongly delayed pod and seed development compared with 24°C/12°C. Temperature affected the number of pods per plant for the upper node group. Plants grown at 19°C had the highest total dry seed weight compared with plants grown at 14°C and 24°C. Temperature per se did not influence the content of starch, protein, and low molecular weight carbohydrates, while their accumulation followed the moisture content in the seed, and thus the seed development stage. The content of raffinose family oligosaccharides increased sharply when the seed moisture dropped below 70% and leveled off at about 40% and 50% moisture for verbascose and stachyose, respectively, coinciding with physiological maturity. The results provide more knowledge about the seed maturation and accumulation in faba bean under low temperatures, important for cultivation under high latitude regions.

To document

Abstract

The aim of the project is to evaluate and assess measures in lawn care management and at the same time to combine new techniques and alternative products to control diseases such as snow mold (Microdochium nivale) and dollar spots (Sclerotinia homoeocarpa) without or with a greatly reduced use of pesticides. Therefore, the lawn research group of the NIBIO (Norwegian Institute for Bioeconomy Research) started a project on Integrated Pest Management (IPM) with a focus on the most important fungal diseases and insect pests on golf turf. The project is supported by STERF (Scandinavian Turf and Environmental Research Foundation) and the R&A (The Royal and Ancient Golf Club of St. Andrews) as main sponsors, as well as by the German Golf Association, the Netherlands Golf Federation sponsor, the Botaniska Analysgruppen Sweden and the Danish Environmental Protection Agency. The current project aims is to develop new findings with regard to the increasing challenges in dealing with the above-mentioned pests. The two questions to check are: (1) the effectiveness of the “rolling” of greens (dollar spot treatment) and the effectivity of UV-C exposure (snow mold prevention). For this reason, two different attempts were made on a putting green at the golf course Osnabrueck (Bissendorf-Jeggen).

Abstract

Increasing the protein value in grass silages for dairy cows is of interest to increase use of homegrown protein sources and reduce nitrogen (N) losses to the environment. Studies have shown that wilting of grass silage can improve the metabolizable protein (MP) value by increasing the rumen microbial protein yield (MCP) and rumen escaped feed protein. We hypothesised that feeding wilted grass silage can improve milk and milk protein production in dairy cows and reduce the need for MP, estimated as amino acids absorbed in the small intestine (AAT), in concentrate. To test this, a continuous feeding experiment with 48 early to mid-lactation Norwegian Red dairy cows, kept in a loose housing system was conducted. Treatments were first cut grass silages from round bales, harvested at early booting from a sward of timothy (Phleum pratense), perennial rye grass (Lolium perenne) and meadow fescue (Festuca pratensis), wilted to 260 and 417 g dry matter (DM)/kg fresh matter. The grass silage was fed ad libitum and supplied with 8.3 kg/d of concentrate, either low (108 g AAT/kg DM) or high (125 g AAT/kg DM) in MP concentration, in a 2×2 factorial arrangement. The experiment lasted for 11 weeks, with the 2 first weeks, where cows received same feeding, used as covariate, and the last 4 weeks were used as data collection period. Wilting reduced fermentation products, ammonia and soluble N in the grass silage, while increased residual water-soluble carbohydrates, like expected. However, there was no difference between treatments in daily silage DM intake (13.1 kg) and milk yield (30.2 kg) or milk content, but feeding high MP concentrate increased urea and uric acid in urine. No major differences were found for rumen pH, amino acids in blood plasma or purine derivatives over creatinine index, as indirect estimate for MCP. In conclusion, high silage DM and high MP in concentrate did not increase the milk production in this study.

To document

Abstract

Wastewater (WW) has been identified as a major hotspot of microbial emerging contaminants (MECs), such as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Currently used WW treatment methods cannot efficiently eliminate these pollutants, resulting in passive contamination of adjacent environments receiving undertreated discharge. More effective WW treatment strategies are therefore urgently required. In this study, newly developed and well-characterised semi-interpenetrating polymer network (semi-IPN) hydrogels derived from the valorisation of marine wastes (e.g., shrimp shells) were investigated for their ARG removal potential. The results indicated that multiple ARGs prevalent in WW, such as ermB, qrnS, sul1 and tetO, were removed by up to 100% after being treated by novel hydrogels. In terms of horizontal gene transfer-associated genetic elements, such as integron-1 intl1, transposons tnpA1 (IS4 group) and tnpA2 (IS6 group), substantial reduction approaching 99.9% was also achieved. Moreover, up to 97% of efflux pump-associated qacE∆1 conferring multidrug resistance (MR) was successfully attenuated. To conclude, the semi-INP hydrogels developed exhibited great potential for ARG mitigation towards strengthening WW decontamination, which provides a viable, cost-effective and environmentally friendly novel treatment approach.

To document

Abstract

Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought–pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.