Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce-dominated forests and can overwhelm the defences of healthy trees through pheromone-coordinated mass-attacks. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management-related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3-year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.

To document

Abstract

Regeneration of polyploidy from young thallus segments of Kappaphycus alvarezii was optimized for genetic improvement. Kappaphycus thallus segment cultured on sterile sea water supplemented with various combinations of Indole acetic acid, Kinetin and Acardian Marine Plant Extract Powder revealed differential response on callus proliferation and development of new thallus. Presence of Acardian Marine Plant Extract Powder (3 mg/l) in combination with Indole acetic acid and Kinetin (0.01 mg/l each) had induced the longest emerging thallus. Exposure of thallus to colchicine at 0.01% with above combination was optimal to induce high frequency regeneration of polyploidy mostly from the meristematic cells. Anatomical study of colchicine induced polyploidy revealed larger cortical cells with irregular thickening of epidermal layer. Phase contrast and Scanning Electron Microscopic study revealed increase in cell size in cortical region with significantly larger number of spherical shaped carrageenan globules in colchicine induced polyploidy than normal thallus. Single cells isolated using enzymatic treatments from colchicine induced polyploidy, shown chromosome number with a ploidy status of 4n ≈ 40. Whereas in normal thallus, only half the number of chromosomes (2n ≈ 20) were observed. Polyploidy were successfully acclimatized gradually using raft method for further evaluation. This is the first report reveals the induction and regeneration of polyploidy in Kappaphycus. The possible application of this finding in genetic improvement of Kappaphycus is discussed.

Abstract

Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.

To document

Abstract

No abstract has been registered