Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The main objective was to evaluate to what extent subsoil compaction on an arable clay soil (Stagnosol (Drainic)) may be alleviated after 5 years under the climate conditions in South-East Norway. Therefore, field plots which had been ploughed and under minimum tillage were compacted through wheel impact (10x) with a 6.6 Mg wheel load. Samples were taken from the ‘compacted’ and ‘non-compacted reference’ treatments at depths of 40 and 60 cm both before and directly after compaction and again 5 years later. The soil physical parameters revealed that pre-compression stress, bulk density, air capacity, air conductivity and saturated hydraulic conductivity at depths of 40 and 60 cm were impaired by compaction, especially under ploughed. After 5 years, bulk density and pre-compression stress remained almost unchanged, while air capacity, air conductivity and saturated hydraulic conductivity had increased at both the 40 and 60 cm depth on both plots as compared to the compacted state and to R for the most part, indicating the recovery of the soil structure in the subsoil. The compaction status evaluated by the ‘compaction verification tool’ indicates the relative reduction of ‘harmful soil compaction’ (after wheel impact) with a change towards ‘slightly harmful compaction’ for the most part with an as yet limited saturated hydraulic conductivity at both depths after 5 years.

Abstract

It is not known to what degree growth and fruit yield are source-limited in everbearing strawberry plants. The growth and yield performance effect of bi-weekly removal of all runners and/or one or two leaves during the cropping season of tunnel-grown ‘Favori’ everbearing strawberry plants was determined. Plants were grown on a table-top system in an open plastic tunnel under natural light conditions in Norway from May to October. Removal of runners and leaves was bi-weekly from 5 June until 25 September. Fruits were harvested from 5 July to 7 October. Bi-weekly runner removal increased total and marketable yield and number and size of fruits, while increasing leaf thinning had the opposite effects. However, none of the treatments affected the fruit number and yield of the first fruiting flush. The treatments did not affect realization of the yield potential of the plants at planting, whereas the continued floral initiation and fruit growth were enhanced by runner removal. Increasing leaf thinning had the opposite effects. Both floral initiation and fruit growth in heavily flowering and fruiting everbearing strawberry are source-limited owing to the high fruit/leaf ratio of such plants.

To document

Abstract

In the Arctic part of the Nordic region, cultivated crops need to specifically adapt to adverse and extreme climate conditions, such as low temperatures, long days, and a short growing season. Under the projected climate change scenarios, higher temperatures and an earlier spring thaw will gradually allow the cultivation of plants that could not be previously cultivated there. For millennia, Pea (Pisum sativum L.) has been a major cultivated protein plant in Nordic countries but is currently limited to the southern parts of the region. However, response and adaptation to the Arctic day length/light spectrum and temperatures are essential for the productivity of the pea germplasm and need to be better understood. This study investigated these factors and identified suitable pea genetic resources for future cultivation and breeding in the Arctic region. Fifty gene bank accessions of peas with a Nordic landrace or cultivar origin were evaluated in 2-year field trials at four Nordic locations in Denmark, Finland, Sweden, and Norway (55° to 69° N). The contrasting environmental conditions of the trial sites revealed differences in expression of phenological, morphological, crop productivity, and quality traits in the accessions. The data showed that light conditions related to a very long photoperiod partly compensated for the lack of accumulated temperature in the far north. A critical factor for cultivation in the Arctic is the use of cultivars with rapid flowering and maturation times combined with early sowing. At the most extreme site (69°N), no accession reached full maturation. Nonetheless several accessions, predominantly landraces of a northern origin, reached a green harvest state. All the cultivars reached full maturation at the sub-Arctic latitude in northern Sweden (63°N) when plants were established early in the season. Seed yield correlated positively with seed number and aboveground biomass, but negatively with flowering time. A high yield potential and protein concentration of dry seed were found in many garden types of pea, confirming their breeding potential for yield. Overall, the results indicated that pea genetic resources are available for breeding or immediate cultivation, thus aiding in the northward expansion of pea cultivation. Predicted climate changes would support this expansion.

To document

Abstract

Mechanistic models are useful tools for understanding and taking account of the complex, dynamic processes such as carbon (C) and nitrogen (N) turnover in soil and crop growth. In this study, the EU-Rotate_N model was first calibrated with measured C and N mineralization from nine potential fertilizer resources decomposing at controlled soil temperature and moisture. The materials included seaweeds, wastes from the food industry, food waste anaerobically digested for biogas production, and animal manure. Then the model’s ability to predict soil and crop data in a field trial with broccoli and potato was evaluated. Except for seaweed, up to 68% of added C and 54–86% of added N was mineralized within 60 days under controlled conditions. The organic resources fell into three groups: seaweed, high-N industrial wastes, and materials with high initial content of mineral N. EU-Rotate_N was successfully calibrated for the materials of industrial origin, whereas seaweeds, anaerobically digested food waste and sheep manure were challenging. The model satisfactorily predicted dry matter (DM) and N contents (root mean square; RMSE: 0.11–0.32) of the above-ground part of broccoli fertilized with anaerobically digested food waste, shrimp shell pellets, sheep manure and mineral fertilizers but not algal meal. After adjusting critical %N for optimum growth, potato DM and N contents were also predicted quite well (RMSE: 0.08–0.44). In conclusion, the model can be used as a learning and decision support tool when using organic materials as N fertilizer, preferably in combination with other models and information from the literature.

Abstract

To hundre mjølkebruk i Midt-Norge blei delt i tre nesten like store grupper; 'Låg' (68 gardar), 'Medium' (67 gardar) og 'Høg' (68 garder), etter årleg tildeling av kraftfôr til mjølkekyrne for å teste effekten av kraftfôrnivå på indikatorar for miljøpåverknad og økonomisk lønsemd. Gjennomsnittleg årleg kraftfôrnivå per ku var 15,4, 18,8 og 21,7 GJ nettoenergi laktasjon (NEL) og årleg avdrått i energikorrigert mjølk (EKM) per ku var 7868, 8421 og 8906 kg i høvesvis 'Låg', ‘Medium’og ‘Høg’. Standard livsløpsanalyse og dekningsbidrag blei brukt til å bestemme indikatorar for miljøpåverknad og økonomiske resultat av mjølk- og kjøttproduksjon. Den funksjonelle eininga var mengde 2,78 MJ spiseleg energi, tilsvarande 1,0 kg EKM eller 0,42 kg kjøtt eller en kombinasjon av mjølk og kjøtt som utgjer 2,78 MJ, altså EKM ekvivalent i mjølk og kjøtt levert EKM-eq. Det globale oppvarmingspotensialet, energiintensiteten og nitrogenintensiteten var i gjennomsnitt 1,46 kg CO2- eq./kg EKM-eq., 5,61 MJ energibruk/kg EKM-eq., og 6,83 N input/N-produkt, og var ikkje forskjellig mellom gruppene. Gardar med ‘Låg’ kraftfôrtildeling brukte mindre areal av total arealbruk til dyrking av innkjøpt fôr utanfor garden enn de i ‘Høg’ (0,39 vs. 0,46 daa/daa), men det totale arealet som blei brukt per kg EKM-eq. var større ('Låg' 3,24 vs. 'Høg' 2,84 m2/kg EKM-eq.). Dekningsbidraget per kg EKM-eq. levert var i gjennomsnitt høgare på 'Låg' gardar (6,57 NOK/kg EKM-eq.) enn 'Medium' (6,04 NOK/ kg EKM-eq.) og 'Høg' (5,73 NOK/kg ECM-eq.). Vår analyse viser at høgare kraftfôrnivå ikkje alltid gir mindre global oppvarmingspotensiale og mengd fossil energi per kg mjølk og kjøtt produsert samanlikna med lågare kraftfôrnivå.

To document

Abstract

1. It is common practice for ecologists to examine species niches in the study of community composition. The response curve of a species in the fundamental niche is usually assumed to be quadratic. The centre of a quadratic curve represents a species' optimal environmental conditions, and the width its ability to tolerate deviations from the optimum. 2. Most multivariate methods assume species respond linearly to niche axes, or with a quadratic curve that is of equal width for all species. However, it is widely understood that some species have the ability to better tolerate deviations from their optimal environment (generalists) compared to other (specialist) species. Rare species often tolerate a smaller range of environments than more common species, corresponding to a narrow niche. 3. We propose a new method, for ordination and fitting Joint Species Distribution Models, based on Generalized Linear Mixed-effects Models, which relaxes the assumptions of equal tolerances. 4. By explicitly estimating species maxima, and species optima and tolerances per ecological gradient, we can better explore how species relate to each other.

To document

Abstract

Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design. After four episodes of bidirectional selection, direct and indirect responses remained within wide prediction intervals, but appeared different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.

To document

Abstract

recent publication by Belton et al. raises points for policy-makers and scientists to consider with respect to the future of aquaculture making recommendations on policies and investments in systems and areas of the world where aquaculture can contribute most. Belton et al. take an ‘us versus them’ approach separating aquaculture by economics, livelihood choices, and water salinity. They conclude “that marine finfish aquaculture in offshore environments will confront economic, biophysical, and technological limitations that hinder its growth and prevent it from contributing significantly to global food and nutrition security.” They argue that land-based freshwater aquaculture is a more favorable production strategy than ocean/marine aquaculture; they disagree with government and non-governmental organizations spatial planning efforts that add new aquaculture to existing ocean uses; they advocate for an open commons for wild fisheries as opposed to aquaculture; and they oppose ‘open ocean’ aquaculture and other types of industrial, capital-intensive, ‘carnivorous’ fish aquaculture. They discredit marine aquaculture rather than explain how all aquaculture sectors are significantly more efficient and sustainable for the future of food than nearly all land-based animal protein alternatives. As an interdisciplinary group of scientists who work in marine aquaculture, we disagree with both the biased analyses and the advocacy presented by Belton et al. Marine aquaculture is growing and is already making a significant contribution to economies and peoples worldwide. None of the concerns Belton et al. raise are new, but their stark statement that farming fish in the sea cannot ‘nourish the world’ misses the mark, and policy-makers would be wrong to follow their misinformed recommendations.