Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Microbes are central drivers of soil processes and in-depth knowledge on how agricultural management practices effects the soil microbiome is essential in the development of sustainable food production systems. Our objective was therefore to explore the long-term effects of organic and conventional cropping systems on soil bacterial and fungal quantity, their community structures and their combined function. To do so, we sampled soil from a long-term experiment in Southeast Norway in 2014, 25 years after the experiment was established, and performed a range of microbial analyses on the samples. The experiment consists of six cropping systems with differences in crop rotations, soil tillage, and with nutrient application regimes covering inorganic fertilizers, cattle slurry (both separately and combined with inorganic fertilizers) and biogas residues from digested household biowaste. The quantity of soil microbes was assessed by extraction of microbial C and N and by analysis of soil DNA (bacterial 16S rRNA, and fungal rRNA internal transcribed spacer region). The structures of the microbial communities were determined and assessment of relatedness of bacterial and fungal communities was done by the unweighted pair group method. Estimates of richness and diversity were based on numbers of unique operational taxonomic units from DNA sequencing and the function of the microbial assembly was measured by means of enzyme assays. Our results showed that production systems including leys had higher microbial biomass and higher numbers of bacterial and fungal gene copies than did systems with cash crops only. A cropping system which appeared to be particularly unfavourable was a reference-system where stubble, roots and exudates were the single source of organic material. Production system significantly affected both bacterial and fungal community structures in the soil. Systems including leys and organic fertilization had higher enzyme activities than did systems with cash crops only. An inclusion of ley in the rotation did not, however, increase either microbial richness or microbial diversity. In fact, the otherwise suboptimal reference-system appeared to have a richness and diversity of both bacteria and fungi at levels similar to those of the other cropping systems, indicating that the microbial function is largely maintained under less favourable agricultural treatments because of the general resilience of soil microorganisms to various stresses. Neither disturbance through tillage nor the use of chemical fertilizer or chemical plant protection measures seemed as such to influence soil microbial communities. Thus, no differences between conventional and organic farming practices as such were found. We conclude that the choice of agricultural management determines the actual microbial community structure, but that biodiversity in general is almost unaffected by cropping system over many years. Adequate addition of organic material is essential to ensure a properly functioning microbial ensemble and, thus, to secure soil structure and fertility over time.

Abstract

In studies of consumption of local food specialties (LFSs), individual personalities are rarely mentioned. In this article, we want to expand on and provide a nuanced explanation of the characteristics of these consumers of these products, asking: Are there any personality traits that characterize these consumers? We use the Big Five personality model to unpack the relationship between individuals' personalities and choices of LFS in the Norwegian context. The model consists of the following five personal traits: extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience. These personality traits are latent, but through questions regarding behavior, the traits may be revealed. To construct latent variables to measure these traits, we apply the graded response model. Furthermore, socioeconomic variables are combined with personality traits in logistic regression models to find the relationships between personality and choice of Norwegian LFSs. Our results show that in all models the latent variable Openness to experience was one of the most important predictors of all the choices of LFS made by individuals. Openness to experience is characterized by fantasy, aesthetic sensitivity, attentiveness to inner feelings, preference for variety, and intellectual curiosity. The consequence of the connection between Openness to experience and LFS is that stakeholders may take this into account when seeking to increase sales.

Abstract

This paper contributes to the debate on sustainable water consumption by exploring the relation between consumers’ personality, understanding of risk/trust and social distinction in water drinking practices in Norway. Our main research question, how can we understand preferences for water consumption?, is approached by answering a set of hypotheses inspired by a combination of three theoretical approaches. Latent variables measuring personality and conspicuous attitudes are included in frequency models based on the statistical beta distribution together with other predictors. Statistical tests were performed to find the connection between expected frequency of water consumption, personality, risk/trust and conspicuous attitudes. The conclusion is that the consequence of the connections between consumers’ personality, understanding of risk and conspicuous consumption of water should be considered by Norwegian stakeholders when planning future strategies and methods for more sustainable water consumption.

Abstract

The combined impact of climate and land-use change poses increasing threats to nature and nature's benefit to people. The LandPress project makes use of the severe Norwegian winter-drought in 2014 as a case study; and combines geographical, ecological and social science approaches to explore the drivers of ecosystem resilience to drought die-back, the ecological processes and implications of drought responses, and management options for mitigating damage and costs. First, by means of remote sensing, we assess the role of climate, environment and land-use in regulating resilience of Calluna heaths to drought die-back locally and along a biogeographic gradient. We find that drought-damage in heather varies across landscapes, and can be quantified by aerial photos, allowing us to establish that both environment (slope) and land-use (prescribed fire) influence ecosystem resistance to drought. Second, we conduct a drought experiment to understand and assess the impacts of severe drought events on coastal heathland ecosystem dynamics and functioning. After the three first years we find only weak effects on plant communities, but distinct responses in plant functional traits suggesting that ecosystem resistance to drought decreases with time since the last prescribed fire. Third, we experimentally assess whether prescribed burning can be used to promote Calluna's resilience after severe drought, and find that prescribed burning efficiently removes damaged heather, stimulating post-fire vegetation development and restore ecosystem functioning after drought. Finally, we conduct a cost-benefit analysis to understand the contribution of land management to the provision of ecosystem services, with focus on securing low fire-risk landscapes. We find that management has more benefits than food production; land-use can reduce the extent of extreme drought, reduce fire risk and help us keep the ecosystem functioning. Our project demonstrates the importance of understanding how interactions between climate-change and land-use and is crucial in developing new management strategies.

To document

Abstract

The main objective of this paper is to present the new model BASGRA_N, to show how it was parameterized for grass swards in Scandinavia, and to evaluate its performance in predicting above-ground biomass, crude protein, cell wall content and dry matter digestibility. The model was developed to allow simulation of: (1) the impact of N-supply on the plants and their environment, (2) the dynamics of greenhouse gas emissions from grasslands, (3) the dynamics of cell-wall content and digestibility of leaves and stems, which could not be simulated with its predecessor, the BASGRA-model. To calibrate and test the model, we used field experimental data. One dataset included observations of biomass (DM) and crude protein content (CP) under different N fertilizer regimes from five sites in central and southern Sweden. The other dataset included observations of DM, and sward components as well as CP, cell wall content (NDF) and DM digestibility as affected by harvesting regime from one site in southwestern Norway. The total number of experiments was nine, of which three were used for model testing. When BASGRA_N was run with the maximum a-posteriori (MAP) parameter vector from the Bayesian calibration for the Swedish test sites, DM and CP were both simulated to an overall Pearson correlation coefficient (Rb) of minimum 0.58, Willmott's index of agreement (d) of minimum 0.69 and normalized root mean squared error (NRMSE) of maximum 0.30. Corresponding metrics for Norwegian test sites were 0.93, 0.96 and 0.27 for DM and > 0.73, > 0.61, < 0.18 for DM digestibility, NDF and CP content, respectively. We conclude that BASGRA_N can be used to simulate yield and CP responses to N with satisfactory precision, while maintaining key features from its predecessor. The results also suggest that DM digestibility and NDF can be simulated satisfactorily, which is supported by results from a recent model comparison study. Further testing of the model is needed for a few variables for which we currently do not have enough data, notably leaching and emission of N-containing compounds. Further work will include application of the model to investigate greenhouse gas mitigation options, and evaluation against independent data for the conditions for which it will be applied.