Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs (miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during library preparation have been documented, the relative performance of current reagent kits has not been investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity and ability to identify differentially expressed miRNAs between the kits, but none were able to detect the full repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger differences were observed between the kits, although none could accurately quantify the relative levels of the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library preparation, suggesting that comparisons of datasets prepared by different procedures should be made with caution. This article is intended to assist researchers select the most appropriate kit for their experimental conditions.

To document

Abstract

Knowledge about spatiotemporal variability of climate change effect on tree-ring width (TRW) and crown condition is essential to optimize the modelling of future forest ecosystem responses to the changing climate. Geographical differences in the climate–growth relationship are a reflection of the regional climatic conditions mainly. In this study, 175 Picea abies trees from the north-western edge of its geographical distribution in Central Norway were evaluated with respect to geographical and age-dependent differences during the common period of 1950–2015. The results showed that the most significant positive correlations between TRW and the current June temperature were unstable although the temperature increased. The correlations suddenly started to decrease (regardless of the site placement and tree age) at the beginning of the 1990s, but subsequently unexpectedly increased in the 2010s. The superposed epoch analysis revealed longer TRW regeneration of the southern plots (except over-mature trees) after negative pointer years compared to the northern plots. Previous summer temperature and related physiological processes (cone crops, storage of nutrients, etc.) significantly negatively affected P. abies growth in the current year. Additionally, our results showed that the selection of the chronology version (standard or residual) significantly affects the resulting correlations and thus must be carefully considered in dendroclimatological studies. Our main outputs can contribute to better understanding of the climate–growth relationship variability and general prediction of the radial growth.

To document

Abstract

From its initiation in 2015 to the end in 2019, KRUS had two goals: to improve the market for and the value of Norwegian wool, and survey the opportunities for local production in a move towards a goal of sustainability in the fashion sector. On a larger scale, KRUS has looked at how we can re-establish an understanding of the connection 2 SIFO REPORT NO 8-19 between the raw material and the finished product within the textile industry and among consumers. It is critical to understand this connection, both to ensure quality products and to reach the market potential for Norwegian wool. To restore the understanding of “where clothes come from” is also at the heart of challenges currently facing the textile industry. The consumption and production of textiles faces major challenges and changes in the future. Today the industry is characterized by low control and little knowledge, while growth in quantity, environmental impact, as well as stress on animals and humans is high. KRUS has contributed to the debate on sustainable clothing by focusing on local value-chains and locally produced apparel. The focus on Norwegian wool and the specific qualities of the different breeds has played an essential role for Norwegian textile tradition and dress culture, and a better understanding of this has been essential to the project. An important challenge for Norwegian wool is that it has not been marketed with any kind of label of origin. Private actors have thus entered the field and developed their own private labels for Norwegian wool. In addition, there are few products on the market containing Norwegian wool beyond hand-knitting yarn, which means that availability has been limited. Throughout the project, we have seen a shift, especially for older sheep breeds, which have posed a special challenge. Their wool is central in keeping Norwegian handicrafts alive, but the quality on some of the wool types has been declining. For others, the challenge is that much of the wool is not taken care of, and constitutes a waste problem. Through breeding-projects, work collaboration, looking closely at labelling systems and business models, KRUS has addressed these challenges

To document

Abstract

The recalcitrance bottleneck of lignocellulosic materials presents a major challenge for biorefineries, including second-generation biofuel production. Because of their abundance in the northern hemisphere, softwoods, such as Norway spruce, are of major interest as a potential feedstock for biorefineries. In nature, softwoods are primarily degraded by basidiomycetous fungi causing brown rot. These fungi employ a non-enzymatic oxidative system to depolymerize wood cell wall components prior to depolymerization by a limited set of hydrolytic and oxidative enzymes. Here, it is shown that Norway spruce pretreated with two species of brown-rot fungi yielded more than 250% increase in glucose release when treated with a commercial enzyme cocktail and that there is a good correlation between mass loss and the degree of digestibility. A series of experiments was performed aimed at mimicking the brown-rot pretreatment, using a modified version of the Fenton reaction. A small increase in digestibility after pretreatment was shown where the aim was to generate reactive oxygen species within the wood cell wall matrix. Further experiments were performed to assess the possibility of performing pretreatment and saccharification in a single system, and the results indicated the need for a complete separation of oxidative pretreatment and saccharification. A more severe pretreatment was also completed, which interestingly did not yield a more digestible material. It was concluded that a biomimicking approach to pretreatment of softwoods using brown-rot fungal mechanisms is possible, but that there are additional factors of the system that need to be known and optimized before serious advances can be made to compete with already existing pretreatment methods.