Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

In a climate model, surface energy and water fluxes of the vegetated ecosystem largely depend on important structural attributes like leaf area index and canopy height. For forests, management can greatly alter these attributes with resulting consequences for the surface albedo, surface roughness, and evapotranspiration. The sensitivity of surface energy and water budgets to alterations in forest structure is relatively unknown in boreal regions, particularly in Nordic Fennoscandia (Norway, Sweden, and Finland), where the forest management footprint is large. Here we perform offline simulations to quantify the sensitivity of surface heat and moisture fluxes to changes in forest composition and structure across daily, seasonal, and annual time scales. For the region on average, it is found that broadleaved deciduous forests cool the surface by 0.16 K annually and 0.3 K in the growing season owed to higher year‐round albedo and lower Bowen ratio, yet in some locations the local cooling can be as much as 2.4 K and 3.0 K, respectively. Moreover, fully developed forests cool the surface by 0.04 K annually in our domain owed to higher evapotranspiration, reaching up to 0.4 K locally in some locations, whereas undeveloped forests warm annually by 0.14 K owed to much lower evapotranspiration reaching up to 0.8 K for some locations. If regional forests are ever to be managed for the local climate regulation services that they provide, our results are an important first step illuminating the potential adverse impacts or benefits across space and time.

Abstract

Seedlings from seeds collected in three natural populations of Norway spruce (Picea abies (L. Karst)) in each of 21 provenances distributed between latitudes 63ºN to 66º20’N and altitudes from 25 to 500 m in Trøndelag og Nordland counties were tested in nursery trials and one long-term field trial. Large provenance variation was found for phenology traits and early height growth in the nursery trials. A strong clinal variation was found for these traits relative to latitude and altitude. These relationships were weaker for height and diameter at ages 26 and 40 years. The timing of bud flush was strongly related to the temperature conditions at the seed collection sites, whilst terminal bud set and lammas shoot percentages showed high correlation coefficients with the provenance latitude. Provenances in the same geographic region showed large differences in height and diameter Growth in the field trial. The long-term experimental site Spelrem is situated within the northern Natural range of Norway spruce and the general trend in this material is that provenances from the Northern part of the range perform better compared with provenances from more southern areas. Hence, the gain from provenance transfer seems to be limited under the present climatic conditions in this region.

To document

Abstract

* In forests, ectomycorrhizal mycelium is pivotal for driving soil carbon and nutrient cycles, but how ectomycorrhizal mycelial dynamics vary in ecosystems with drought periods is unknown. We quantified the production and turnover of mycorrhizal mycelium in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests and related the estimates to standardised precipitation index (SPI), to study how mycelial dynamics relates to tree species and drought‐moisture conditions. * Production and turnover of mycelium was estimated between July and February, by quantifying the fungal biomass (ergosterol) in ingrowth mesh bags and using statistical modelling. SPI for time scales of 1–3 months was calculated from precipitation records and precipitation data over the study period. * Forests dominated by Pinus trees displayed higher biomass but were seasonally more variable, as opposed to Q. ilex forests where the mycelial biomass remained lower and stable over the season. Production and turnover, respectively, varied between 1.4–5.9 kg ha−1 d−1 and 7.2–9.9 times yr−1 over the different forest types and were positively correlated with 2‐month and 3‐month SPI over the study period. * Our results demonstrated that mycorrhizal mycelial biomass varied with season and tree species and we speculate that production and turnover are related to physiology and plant host performance during drought.

Abstract

When free-ranging animals encounter traffic on roads or railways, it may have fatal outcome. In Europe, collisions between vehicles and animals have increased the last 40 years, causing eco-nomic losses and serious welfare concerns. Today there is no technological solution to prevent such collisions in the rough, arctic climate that represents most parts of Norway. By using small and energy-efficient radio transmitters moulded into headcollars, researchers have now devel-oped and tested a system for warning traffic when semi-domestic reindeer are nearby the road. Tests on more than 700 reindeer over three consecutive winter seasons are promising.

To document

Abstract

Spruce-fir-beech mixed forests cover a large area in European mountain regions, with high ecological and socio-economic importance. As elevation-zone systems they are highly affected by climate change, which is modifying species growth patterns and productivity shifts among species. The extent to which associated tree species can access resources and grow asynchronously may affect their resistance and persistence under climate change. Intra-specific synchrony in annual tree growth is a good indicator of species specific dependence on environmental conditions variability. However, little attention has been paid to explore the role of the inter-specific growth asynchrony in the adaptation of mixed forests to climate change. Here we used a database of 1790 tree-ring series collected from 28 experimental plots in spruce-fir-beech mixed forests across Europe to explore how spatio-temporal patterns of the intra- and inter-specific growth synchrony relate to climate variation during the past century. We further examined whether synchrony in growth response to inter-annual environmental fluctuations depended on site conditions. We found that the inter-specific growth synchrony was always lower than the intra-specific synchrony, for both high (inter-annual fluctuations) and low frequency (mid- to long-term) growth variation, suggesting between species niche complementarity at both temporal levels. Intra- and inter-specific synchronies in inter-annual growth fluctuations significantly changed along elevation, being greater at higher elevations. Moreover, the climate warming likely induced temporal changes in synchrony, but the effect varied along the elevation gradient. The synchrony strongly intensified at lower elevations likely due to climate warming and drying conditions. Our results suggest that intra- and inter-specific growth synchrony can be used as an indicator of temporal niche complementarity among species. We conclude that spruce-fir-beech mixtures should be preferred against mono-specific forests to buffer climate change impacts in mountain regions.

To document

Abstract

Because of generally small log piles, loading forwarders during thinning is time consuming. The Assortment Grapple, an innovative grapple with an extra pair of claws which facilitates the handling of two assortments during one loading crane cycle, has been designed to decrease forwarders’ loading time consumption. A standardized experiment was performed in a virtual thinning stand using a machine simulator with the objectives to form guidelines for working with the Assortment Grapple and to analyse its development potential. Four experienced operators participated in the study. According to the results, the Assortment Grapple’s accumulating function is beneficial only when there are no remaining trees between piles loaded during the same crane cycle. In such cases, none of participating operators lost time, and 3 of 4 operators saved time notably. The problem with the remaining trees is the extra time required to steer the crane tip around them. Therefore, a harvester should place those log piles that are later to be forwarded together in the same space with no remaining trees between the piles. Furthermore, we recommend that the Assortment Grapple’s usability will be improved by adding an own rocker switch on the forwarder’s controls to command the extra claws.