Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Accurate estimation of site productivity is essential for forest projections and scenario modelling. We present and evaluate models to predict site index (SI) and whether a site is productive (potential total stem volume production ≥ 1 m3·ha−1·year−1) in a wall-to-wall high-resolution (16 m × 16 m) SI map for Norway. We investigate whether remotely sensed data improve predictions. We also study the advantages and disadvantages of using boosted regression trees (BRT), a machine-learning algorithm, to create high-accuracy SI maps. We use climatic and topographical data, soil parent material, a land resource map, and depth to water, together with Sentinel-2 satellite images and airborne laser scanning metrics, as predictor variables. We use the SI observed at more than 10 000 National Forest Inventory (NFI) sample plots throughout Norway to fit BRT models and validate the models using 5822 independent temporary plots from the NFI. We benchmark our results against SI estimates from forest monitoring inventories. We find that the SI from BRT has root mean squared error (RMSE) ranging from 2.3 m (hardwoods) to 3.6 m (spruce) when tested against independent validation data from the NFI temporary plots. These RMSEs are similar or marginally better than an evaluation of SI estimates from operational forest management plans where SI normally stems from manual photo interpretation.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
After fungal decay experiments chemical characterisation of the wood is often a routine and several methodological approaches are available. In this study, we tested if simultaneous thermal analysis (STA) is a valid alternative to traditional wet chemical methods since STA allows significantly smaller sample size and faster analysis. Three model fungi including the brown rot fungi Rhodonia placenta and Gloeophyllum trabeum and the white rot fungus Trametes versicolor were employed in the study using Norway spruce as substrate. The experiment was harvested after 10, 20 and 52 weeks. At each harvest interval, aliquots of the material were characterized by STA and wet chemical methods. The results validated that STA can be effectively used to estimate cell wall composition of brown rot depolymerised wood. However, STA slightly overestimated cellulose at brown rot decay above 50%. The method was not verified for simultaneous white rot because STA only estimated hemicellulose correctly compared to the wet chemical method. Hence, STA is considered suitable for brown rot fungi below 50% mass loss but not for simultaneous white rot because STA did not estimate cellulose and lignin correctly.
Abstract
No abstract has been registered
Abstract
No abstract has been registered