Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Sammendrag
Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.
Forfattere
Alice Budai Daniel Rasse Teresa Gómez de la Bárcena Hugh Riley Vegard Martinsen Ievina Sturite Adam Thomas O'Toole Samson Øpstad Thomas CottisSammendrag
No abstract has been registered
Forfattere
Erlend Sørmo Katinka Muri Krahn Gudny Øyre Flatabø Thomas Hartnik Hans Peter Heinrich Arp Gerard CornelissenSammendrag
Biomass pyrolysis is the anoxic thermal conversion of biomass into a carbon rich, porous solid, often called biochar. This could be a better waste management alternative for contaminated organic wastes than incineration, due to the useful properties of biochar and potential for carbon sequestration. There are, however, concerns about the potential formation/destruction of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). Six organic wastes, including digested sewage sludges, wood wastes, and food waste reject, were pyrolyzed (500–800°C) in a full-scale relevant unit (1–5 kg biochar hr−1). Removal efficiencies for PCBs and PCDD/Fs were > 99% in the produced biochars. Biochar PAH-content (2.7–118 mgkg−1) was not significantly correlated to feedstock or temperature. PAHs (2563–8285 mgkg−1), PCBs (22–113 µgkg−1), and PCDD/Fs (1.8–50 ngTEQ kg−1) accumulated in the pyrolysis condensate, making this a hazardous waste best handled as a fuel for high temperature combustion. Emission concentrations for PAHs (0.22–421 µgNm−3) and PCDD/Fs (≤2.7 pgTEQ Nm−3) were mainly associated with particles and were below the European Union’s waste incineration thresholds. Emission factors ranged from 0.0002 to 78 mg tonne−1 biochar for PAHs and 0.002–0.45 µgTEQ tonne−1 biochar for PCDD/Fs. PCDD/F-formation was negligible during high temperature (≥500 °C) biomass pyrolysis (69–90% net loss)
Forfattere
Ildikó Fekete-Kertész Tamás Stirling Emese Vaszita Zsófia Berkl Eva Farkas Sebastian Hedwig Kirsten Remmen Markus Lenz Mónika Molnár Viktória FeiglSammendrag
The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU’s economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies’ ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.
Forfattere
Viktória Feigl Anna Medgyes-Horváth András Kari Ádám Török Nelli Bombolya Zsófia Berkl Eva Farkas Ildikó Fekete-KertészSammendrag
Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8–10 and salt content at 5–7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.
Sammendrag
Birch wood is a potential feedstock for biogas production in Northern Europe; however, the lignocellulosic matrix is recalcitrant preventing efficient conversion to methane. To improve digestibility, birch wood was thermally pre-treated using steam explosion at 220 °C for 10 min. The steam-exploded birch wood (SEBW) was co-digested with cow manure for a period of 120 days in continuously fed CSTRs where the microbial community adapted to the SEBW feedstock. Changes in the microbial community were tracked by stable carbon isotopes- and 16S r RNA analyses. The results showed that the adapted microbial culture could increase methane production up to 365 mL/g VS day, which is higher than previously reported methane production from pre-treated SEBW. This study also revealed that the microbial adaptation significantly increased the tolerance of the microbial community against the inhibitors furfural and HMF which were formed during pre-treatment of birch. The results of the microbial analysis indicated that the relative amount of cellulosic hydrolytic microorganisms (e.g. Actinobacteriota and Fibrobacterota) increased and replaced syntrophic acetate bacteria (e.g. Cloacimonadota, Dethiobacteraceae, and Syntrophomonadaceae) as a function of time. Moreover, the stable carbon isotope analysis indicated that the acetoclastic pathway became the main route for methane production after long-term adaptation. The shift in methane production pathway and change in microbial community shows that for anaerobic digestion of SEBW, the hydrolysis step is important. Although acetoclastic methanogens became dominant after 120 days, a potential route for methane production could also be a direct electron transfer among Sedimentibacter and methanogen archaea.
Forfattere
Kushan D. Siriwardhana Dimantha I. Jayaneththi Ruchiru D. Herath Randika K. Makumbura Hemantha Jayasinghe Miyuru Gunathilake Hazi Md. Azamathulla Kiran Tota-Maharaj Upaka RathnayakeSammendrag
No abstract has been registered
Forfattere
Sanjana Zoysa Vindhya Basnayake Jayanga T. Samarasinghe Miyuru Gunathilake Komali Kantamaneni Nitin Muttil Uttam Pawar Upaka RathnayakeSammendrag
No abstract has been registered
Forfattere
Imiya M. Chathuranika Erandi Sachinthanie Phub Zam Miyuru Gunathilake Denkar Denkar Nitin Muttil Amila Abeynayaka Komali Kantamaneni Upaka RathnayakeSammendrag
Access to safe drinking water and improved sanitation are important fundamental rights of people around the world to maintain good health. However, freshwater resources are threatened by many anthropogenic activities. Therefore, sustainable water supply is a challenge. Limited access to safe drinking water and unimproved sanitation facilities in some of its urban and rural areas are two of the major challenges for Bhutan in the 21st century. The water quality in the natural water systems in the cities and suburbs has significantly decreased while the urban infrastructure is being improved in Bhutan. Therefore, this study presents the state-of-the-art of water resources in Bhutan and the challenges for a sustainable water supply system. The current water status, drinking water sources and accessibility, factors affecting water quality degradation in urban and rural areas, water treatment methods, and implementation of sustainable drinking water accessibility with population growth in Bhutan are discussed in detail. Results of the review revealed that the water quality has deteriorated over the last decade and has a high challenge to provide safe water to some of the areas in Bhutan. Geographic changes, financial difficulties, urban expansion, and climate change are the reasons for the lack of safe drinking water accessibility for people in town areas. It is, therefore, recommended to have a comprehensive integrate water resources management (IWRM) approach while considering all stakeholders to find sustainable solutions for the challenges showcased in this paper.
Sammendrag
This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.