Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

Aim Effective management of non-indigenous species requires knowledge of their dispersal factors and founder events. We aim to identify the main environmental drivers favouring dispersal events along the invasion gradient and to characterize the spatial patterns of genetic diversity in feral populations of the non-native pink salmon within its epicentre of invasion in Norway. Location Mainland Norway and North Atlantic Basin. Methods We first conducted SDM using four modelling techniques with varying levels of complexity, which encompassed both regression-based and tree-based machine-learning algorithms, using climatic data from the present to 2050. Then, we used the triple-enzyme restriction-site associated DNA sequencing (3RADseq) approach to genotype over 30,000 high-quality single-nucleotide polymorphisms to elucidate the patterns of genetic diversity and gene flow within the pink salmon putative invasion hotspot. Results We discovered temperature- and precipitation-related variables drove pink salmon distributional shifts across its non-native ranges and that climate-induced favourable areas will remain stable for the next 30 years. In addition, all SDMs identified north-eastern Norway as the epicentre of the pink salmon invasion, and genomic data revealed that there was minimal variation in genetic diversity across the sampled populations at a genome-wide level in this region. While utilizing a specific group of ‘diagnostic’ SNPs, we observed a significant degree of genetic differentiation, ranging from moderate to substantial, and detected four hierarchical genetic clusters concordant with geography. Main Conclusions Our findings suggest that fluctuations in climate extreme events associated with ongoing climate change will likely maintain environmental favourability for the pink salmon outside its ‘native’/introduced ranges. Locally invaded rivers are themselves potential source populations of invaders in the ongoing secondary spread of pink salmon in Northern Norway. Our study shows that SDMs and genomic data can reveal species distribution determinants and provide indicators to aid in post-control measures and potentially inferences about their success.

Abstract

By the time they enter soils, engineered nanomaterials (ENM) have undergone physicochemical transformations and may no longer resemble the pristine materials which have been thoroughly investigated during two decades of nanotoxicology research. Is the behavior of environmentally relevant chemical forms of ENM different from that of other metallic species present in soils? Are they more available to soil organisms than their naturally occurring counterparts? The present study aimed at answering these questions, through the use of isotopically enriched ENMs, which could be traced at low concentrations in soil microcosms, despite high natural metallic background. The relevance of the chemical forms was ensured by introducing isotopically enriched 109Ag, 68ZnO and 46TiO2 ENM to a wastewater treatment plant and using the resulting sewage sludge (final sink for most ENM) as amendment in soil microcosms with earthworms. The sludge application rate to soil was similar to that used in agriculture and the experiment lasted for a month. Protocols using inductively coupled plasma mass spectrometry were developed for determination of isotope ratios in complex matrixes, such as soil and organisms. For 109Ag ENM, the dissolved fraction in soil (i.e. the most easily accumulated in organisms) was extremely low and comparable to that of Ag naturally present in soil, and transfer factors to earthworms were similar to those of natural Ag. For 46TiO2 ENM, the transfer to earthworms was negligible, similarly to what was observed for natural Ti. While no difference in behavior and bioavailability was observed between ENM and their naturally occurring counterparts for Ag and Ti, different results were obtained for Zn. The dissolved fraction for 68ZnO ENM was 3-5 times higher than for Zn forms naturally present in soil, and transfer factors to earthworms twice those of natural Zn. Overcoming long-standing challenges related to environmental relevance of chemical forms and concentrations in nanotechnology studies, the approach provides valuable insight into behavior and impacts of environmentally relevant forms of ENM in soils.

Abstract

Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.