Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Abstract
No abstract has been registered
Authors
Melinda D. Smith Kate D. Wilkins Martin C. Holdrege Peter Wilfahrt Scott L. Collins Alan K. Knapp Osvaldo E. Sala Jeffrey S. Dukes Richard P. Phillips Laura Yahdjian Laureano A. Gherardi Timothy Ohlert Claus Beier Lauchlan H. Fraser Anke Jentsch Michael E. Loik Fernando T. Maestre Sally A. Power Qiang Yu Andrew J. Felton Seth M. Munson Yiqi Luo Hamed Abdoli Mehdi Abedi Concepción L. Alados Juan Alberti Moshe Alon Hui An Brian Anacker Maggie Anderson Harald Auge Seton Bachle Khadijeh Bahalkeh Michael Bahn Amgaa Batbaatar Taryn Bauerle Karen H. Beard Kai Behn Ilka Beil Lucio Biancari Irmgard Blindow Viviana Florencia Bondaruk Elizabeth T. Borer Edward W. Bork Carlos Martin Bruschetti Kerry M. Byrne James F. Cahill Dianela A. Calvo Michele Carbognani Augusto Cardoni Cameron N. Carlyle Miguel Castillo-Garcia Scott X. Chang Jeff Chieppa Marcus V. Cianciaruso Ofer Cohen Amanda L. Cordeiro Daniela F. Cusack Sven Dahlke Pedro Daleo Carla M. D'Antonio Lee H. Dietterich Tim S. Doherty Maren Dubbert Anne Ebeling Nico Eisenhauer Felícia M. Fischer Tai G.W. Forte Tobias Gebauer Beatriz Gozalo Aaron C. Greenville Karlo G. Guidoni-Martins Heather J. Hannusch Siri Vatsø Haugum Yann Hautier Mariet Hefting Hugh A.L. Henry Daniela Hoss Oscar Iribarne Forest Isbell Yari Johnson Samuel Jordan Eugene F. Kelly Kaitlin Kimmel Juergen Kreyling György Kröel-Dulay Johannes Ingrisch Alicia Kröpfl Angelika Kübert Andrew Kulmatiski Eric G. Lamb Klaus Steenberg Larsen Julie Larson Cintia V. Leder Anja Linstädter Jielin Liu Shirong Liu Alexandra G. Lodge Grisel Longo Alejandro Loydi Junwei Luan Jason Lawson Frederick Curtis Lubbe Craig Macfarlane Kathleen Mackie-Haas Andrey V. Malyshev Adrián Maturano-Ruiz Thomas Merchant Daniel B. Metcalfe Akira S. Mori Edwin Mudongo Gregory S. Newman Uffe N. Nielsen Dale Nimmo Yujie Niu Paola Nobre Rory C. O'Connor Romà Ogaya Gastón R. Oñatibia Ildikó Orbán Brooke Osborne Rafael Otfinowski Meelis Pärtel Josep Penuelas Pablo L. Peri Guadalupe Peter Alessandro Petraglia Catherine Picon-Cochard Valério D. Pillar Juan Manuel Piñeiro-Guerra Laura W. Ploughe Robert M. Plowes Cristy Portales-Reyes Suzanne M. Prober Yolanda Pueyo Sasha C. Reed Euan G. Ritchie Dana Aylén Rodríguez William E. Rogers Christiane Roscher Ana M. Sánchez Bráulio A. Santos María Cecilia Scarfó Eric W. Seabloom Baoku Shi Lara Souza Andreas Stampfli Rachel J. Standish Marcelo Sternberg Wei Sun Marie Sünnemann Michelle Tedder Pål Thorvaldsen Dashuan Tian Katja Tielbörger Alejandro Valdecantos Liesbeth van den Brink Vigdis Vandvik Mathew R. Vankoughnett Liv Guri Velle Changhui Wang Yi Wang Glenda M. Wardle Christiane Werner Cunzheng Wei Georg Wiehl Jennifer L. Williams Amelia A. Wolf Michaela Zeiter Fawei Zhang Juntao Zhu Ning Zong Xiaoan ZuoAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
1. We propose that the ecological resilience of communities to permanent changes of the environment can be based on how variation in the overall abundance of individuals affects the number of species. Community sensitivity is defined as the ratio between the rate of change in the log expected number of species and the rate of change in the log expected number of individuals in the community. High community sensitivity means that small changes in the total abundance strongly impact the number of species. Community resistance is the proportional reduction in expected number of individuals that the community can sustain before expecting to lose one species. A small value of community resistance means that the community can only endure a small reduction in abundance before it is expected to lose one species. 2. Based on long-term studies of four bird communities in European deciduous forests at different latitudes large differences were found in the resilience to environmental perturbations. Estimating the variance components of the species abundance distribution revealed how different processes contributed to the community sensitivity and resistance. Species heterogeneity in the population dynamics was the largest component, but its proportion varied among communities. Species-specific response to environmental fluctuations was the second major component of the variation in abundance. 3. Estimates of community sensitivity and resistance based on data only from a single year were in general larger than those based on estimates from longer time series. Thus, our approach can provide rapid and conservative assessment of the resilience of communities to environmental changes also including only short-term data. 4. This study shows that a general ecological mechanism, caused by increased strength of density dependence due to reduction in resource availability, can provide an intuitive measure of community resilience to environmental variation. Our analyses also illustrate the importance of including specific assumptions about how different processes affect community dynamics. For example, if stochastic fluctuations in the environment affect all species in a similar way, the sensitivity and resistance of the community to environmental changes will be different from communities in which all species show independent responses.
2023
Abstract
No abstract has been registered
Authors
Linn Vassvik Anders Nielsen Erik Trond Aschehoug Bjørn Arild Hatteland Joseph Chipperfield Michael P. D. GarrattAbstract
No abstract has been registered
Authors
Linn VassvikAbstract
No abstract has been registered
Authors
Linn VassvikAbstract
No abstract has been registered
Authors
Line Johansen Liv Guri Velle Annette Bär Marie Vestergaard Henriksen Pål Thorvaldsen Dag-Inge Øien Liv Byrkjeland Sigrun AuneAbstract
No abstract has been registered