Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

Abstract

Surface albedo is an important physical attribute of the climate system and satellite retrievals are useful for understanding how it varies in time and space. Surface albedo is sensitive to land cover and structure, which can vary considerably within the area comprising the effective spatial resolution of the satellite-based retrieval. This is particularly true for MODIS products and for topographically complex regions, such as Norway, which makes it difficult to separate the environmental drivers (e.g., temperature and snow) from those related to land cover and vegetation structure. In the present study, we employ high resolution datasets of Norwegian land cover and structure to spectrally unmix MODIS surface albedo retrievals (MCD43A3 v6) to study how surface albedo varies with land cover and structure. Such insights are useful for constraining land cover-dependent albedo parameterizations in models employed for regional climate or hydrological research and for developing new empirical models. At the scale of individual land cover types, we found that the monthly surface albedo can be predicted at a high accuracy when given additional information about forest structure, snow cover, and near surface air temperature. Such predictions can provide useful empirical benchmarks for climate model predictions made at the land cover level, which is critical for instilling greater confidence in the albedo-related climate impacts of anthropogenic land use/land cover change (LULCC).

To document

Abstract

The measurement network Integrated Carbon Observation System (ICOS) is dedicated to the quantification of fluxes of CO2, H2O, N2O and CH4 at the boundary between vegetation surfaces and the lower atmosphere. The implementation of observations sites follows strict protocols and a challenging labelling process to ensure standardized intercomparable observations. We report on our experiences in attempting to establish the only Norwegian ICOS Ecosystem site thus far, NO-Hur, located in an old-growth spruce forest at Hurdal in Southeast Norway. NOHur is planned as a class 2 site, with the option to an upgrade to class 1 later. The instrumentation and sensors needed, the requirements for spatial homogeneity and a detailed analysis of a digital terrain model are presented. The current status of the tower construction, the preliminary measurements obtained with the existing ICOScertified equipment at a test site, and the plans for integrating the measurements operationally into the network are shown

To document

Abstract

The measurement network Integrated Carbon Observation System (ICOS) is dedicated to the quantification of fluxes of CO2, H2O, N2O and CH4 at the boundary between vegetation surfaces and the lower atmosphere. The implementation of observations sites follows strict protocols and a challenging labelling process to ensure standardized intercomparable observations. We report on our experiences in attempting to establish the only Norwegian ICOS Ecosystem site thus far, NO-Hur, located in an old-growth spruce forest at Hurdal in Southeast Norway. NOHur is planned as a class 2 site, with the option to an upgrade to class 1 later. The instrumentation and sensors needed, the requirements for spatial homogeneity and a detailed analysis of a digital terrain model are presented. The current status of the tower construction, the preliminary measurements obtained with the existing ICOScertified equipment at a test site, and the plans for integrating the measurements operationally into the network are shown