Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Clarireedia spp., Fusarium culmorum, and Microdochium nivale are destructive and widespread fungal pathogens causing turfgrass disease. Chemical control is a key tool for managing these diseases on golf greens but are most effective when used in a manner that reduces overall inputs, maximizes fungicide efficacy, and minimizes the risk of fungicide resistance. In this study, sensitivity to eight commonly used fungicides was tested in 13 isolates of Clarireedia spp., F. culmorum, and M. nivale via in vitro toxicity assays. Fungicide sensitivity varied significantly among the three species, with isolates of F. culmorum showing the least sensitivity. The sensitivity of M. nivale to all tested fungicides was high (with the exception of tebuconazole), but only four fungicides (Banner Maxx®, Instrata® Elite, Medallion TL, and Switch® 62,5 WG) suppressed the growth of M. nivale completely at a concentration of 1% of the recommended dose. All three fludioxonil-containing fungicides either alone (Medallion TL) or in combination with difeconazole (Instrata® Elite) or cyprodinil (Switch® 62,5 WG) had the same high efficacy against isolates of both M. nivale and Clarireedia spp. On average, the Clarireedia isolates tested in this study showed high sensitivity to the tested fungicides, except for Heritage (azoxystrobin). The observed variation in sensitivity among isolates within the same fungal species to different fungicides needs further investigation, as an analysis of the differences in fungal growth within each fungal group revealed a significant isolate × fungicide interaction (p < .001).

To document

Abstract

Desiccation with diquat about one week before seed harvest has been common practise in Norwegian clover seed production. However, after withdrawal of diquat in 2020, clover seed growers no longer have desiccators available. In 2019 and 2020, six field trials in red clover and two field trials in white clover were carried out to evaluate alternative chemical products at different rates and at two different spraying dates, either early at 50% mature seed heads and / or late at 65% mature seed heads. Products included, either for one or two years, was Spotlight Plus (carfentrazonethyl), Beloukha (pelargonic acid), Glypper (glyphosate), Gozai (Pyraflufen-ethyl), Harmonix LeafActive (acetic acid), Harmonix FoliaPlus (pelargonic acid), Flurostar (fluroxypyr) and Saltex (sodium chloride) and liquid urea-based fertilizers. In addition, swathing was examined as an alternative in two red clover trials in 2020. While none of the tested chemicals were superior to diquat, the most promising alternatives were Harmonix FoliaPlus and Harmonix LeafActive in red clover or Harmonix FoliaPlus in white clover. Although usually less effective than these products, Beloukha also had an acceptable desiccation effect, especially when sprayed early and late. Swathing before harvest, using finger bar cutters, was an effective drying method under favourable weather conditions.

2021

Abstract

This research aimed to determine if creeping bentgrass (Agrostis stolonifera L.) can be used as an alternative to colonial bentgrass (Agrostis capillaris L.) in a mixture with red fescue [equal rates of Chewings fescue (Festuca rubra ssp. commutata Gaud.) and slender creeping red fescue (Festuca rubra ssp. littoralis [G. Mey.] Auquier)] on Nordic golf greens managed without pesticides. The two mixtures were compared in two experiments: Experiment 1 under the creeping bentgrass management regime (mowing height, 3 mm; fertilization, 15 g N m−2 yr−1) and Experiment 2 under the red fescue management regime (5 mm and 10 g N m−2 yr−1) at three sites during 2015–2018. A seed mixture of red fescue and velvet bentgrass (Agrostis canina L.) was included in Experiment 2 only. The results showed that red fescue plus creeping bentgrass produced greens of equal turfgrass quality and with less Microdochium patch than red fescue plus colonial bentgrass under both regimes. In Experiment 2, red fescue plus velvet bentgrass resulted in higher turfgrass quality than the other mixtures but was more susceptible to Microdochium patch than red fescue plus creeping bentgrass. Tiller counts in the mixed plots at Landvik showed that red fescue was not outcompeted by bentgrass in any of the mixtures and that it was easier to manipulate the balance between red fescue and bentgrass in the mixture with creeping bentgrass than that with colonial bentgrass. More research should be put into optimal management, especially irrigation and thatch control, of mixed red fescue–bentgrass greens.

Abstract

In 2018–2019, establishment problems were encountered, after reseeding creeping bentgrass (Agrostis stolonifera) on a sand-based putting green after ice encasement at the NIBIO Turfgrass Research Center, Norway. Seeds germinated, but the seedlings attained a purple color and died in large patches. Replacement of the top 3 cm layer with new sand amended with Sphagnum peat or garden compost did not solve the problem. To explain this phenomenon, we (1) analyzed the original substrate for nematodes in patches with and without reestablishment failure; and (2) conducted a factorial pot trial with creeping bentgrass and Chewings fescue (Festuca rubra ssp. commutata) seeded on different substrates, some of them in layers, and with and without phosphorus (P) fertilization. The nematode counts showed six times more stubby-root nematodes and two times more spiral nematodes and needle nematodes in the patches with dead seedlings than in the patches with healthy seedings. In the pot trial, the fastest and slowest reestablishment was observed with new sand amended with garden compost and in the two treatments that included the original substrate, respectively. Replacement of the top 3 cm of the old substrate with new garden compost resulted in stagnation of bentgrass seedlings from four weeks after seeding, while fescue seedlings were unaffected. We conclude that the failure to reestablish creeping bentgrass was primarily due to nematodes, which are likely to be more critical for seedlings than for established turf. The green was later reestablished successfully with a 100 % red fescue seed blend.