Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

Abstract

The “Arctic peas” project Climate changes expected in the near future will result in higher temperatures and longer growing season at high latitudes. This might open up for possibilities for pea production in Arctic and northern areas, and the need for cultivars more adapted to northern conditions is likely to increase. At NordGen - a common genebank for all the Nordic countries - a large number of Nordic pea accessions are conserved, including both cultivars, landraces and breeding material. Does this material hold keys to the future? The ongoing Nordic cooperation research project «Arctic peas» aims to identify germplasm of peas well adapted either for breeding or immediate cultivation in the Arctic/Nordic regions. The project evaluates important traits in 50 selected accessions from NordGen in field trials at four contrasting Nordic locations, at latitudes ranging from 55° to 69° N (see map). Among the evaluated traits are flowering time, maturation time and yield, as well as protein content. Will the genetic material show different expressions at locations with clear distinction in daylength, temperature and climate? The project also aims to increase the knowledge and use of the Nordic pea accessions conserved at NordGen, and strengthen the collaboration between companies, organizations and researchers in the Nordic countries.

To document See dataset

Abstract

There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.

Abstract

Rhodiola rosea is a highly valued herbal medicinal plant. It is growing wild in most parts of Norway and mountainous areas around the world. The marker compounds are salidroside, cinnamyl alcohol, glycosides (rosine, rosavine, rosarine), flavonoids (rhodionin, rhodiosin, rhodiolin) and terpens (Galambosi 1999), where the rosavins are unique to R. rosea. In Norway, germplasm collections of R. rosea are maintained by NIBIO; at Apelsvoll in Southern Norway, consisting of 97 different clones. The ranges in content of secondary metabolites in the collection are for rosavin 2.90-85.95 mg g-1, salidroside 0.03-12.85 mg g-1, rosin 0.08-4.75 mg g-1, tyrosol 0.04-2.15 mg g-1 and cinnamyl alcohol 0.02-1.18 mg g-1. A number of different studies have been performed on how biotic and abiotic factors affects the yield of the roots as well the content in metabolites. We find that the flowering of the plant is dependent on cool temperatures during dormancy and thus climatic changes may affect the plant development as well as the production of metabolites. Studies performed in Norway as well as between European countries shows that geographical location affects the content of metabolites and here also variation in clones are a player. In the present presentation results from these and more studies will be presented. Also comprising results on the effect of white-, blue- and red light on the growth and chemical composition of greenhouse grown plants.