Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Inthis study, we introduce Point2Tree, a modular and versatile framework that employs a three-tiered methodology, inclusive of semantic segmentation, instance segmentation, and hyperparameter optimization analysis, designed to process laser point clouds in forestry. The semantic segmentation stage is built upon the Pointnet++ architecture and is primarily tasked with categorizing each point in the point cloud into meaningful groups or ’segments’, specifically in this context, differentiating between diverse tree parts, i.e., vegetation, stems, and coarse woody debris. The category for the ground is also provided. Semantic segmentation achieved an F1-score of 0.92, showing a high level of accuracy in classifying forest elements. In the instance segmentation stage, we further refine this process by identifying each tree as a unique entity. This process, which uses a graph-based approach, yielded an F1-score of approximately 0.6, signifying reasonable performance in delineating individual trees. The third stage involves a hyperparameter optimization analysis, conducted through a Bayesian strategy, which led to performance improvement of the overall framework by around four percentage points. Point2Tree was tested on two datasets, one from a managed boreal coniferous forest in Våler, Norway, with 16 plots chosen to cover a range of forest conditions. The modular design of the framework allows it to handle diverse pointcloud densities and types of terrestrial laser scanning data.

To document

Abstract

Global warming necessitates urgent action to reduce carbon dioxide (CO2) emissions and remove CO2 from the atmosphere. Biochar, a type of carbonized biomass which can be produced from crop residues (CRs), offers a promising solution for carbon dioxide removal (CDR) when it is used to sequester photosynthetically fixed carbon that would otherwise have been returned to atmospheric CO2 through respiration or combustion. However, high-resolution spatially explicit maps of CR resources and their capacity for climate change mitigation through biochar production are currently lacking, with previous global studies relying on coarse (mostly country scale) aggregated statistics. By developing a comprehensive high spatial resolution global dataset of CR production, we show that, globally, CRs generate around 2.4 Pg C annually. If 100% of these residues were utilized, the maximum theoretical technical potential for biochar production from CRs amounts to 1.0 Pg C year−1 (3.7 Pg CO2e year−1). The permanence of biochar differs across regions, with the fraction of initial carbon that remains after 100 years ranging from 60% in warm climates to nearly 100% in cryosols. Assuming that biochar is sequestered in soils close to point of production, approximately 0.72 Pg C year−1 (2.6 Pg CO2e year−1) of the technical potential would remain sequestered after 100 years. However, when considering limitations on sustainable residue harvesting and competing livestock usage, the global biochar production potential decreases to 0.51 Pg C year−1 (1.9 Pg CO2e year−1), with 0.36 Pg C year−1 (1.3 Pg CO2e year−1) remaining sequestered after a century. Twelve countries have the technical potential to sequester over one fifth of their current emissions as biochar from CRs, with Bhutan (68%) and India (53%) having the largest ratios. The high-resolution maps of CR production and biochar sequestration potential provided here will provide valuable insights and support decision-making related to biochar production and investment in biochar production capacity.

To document

Abstract

The legume cavalcade, Centrosema pascuorum, is used extensively as a cover crop and as a component of conservation agriculture systems. It is also an attractive rotation or cover crop for the management of root-knot nematodes (RKN; Meloidogyne spp.) as it is a non-host. RKN are persistent pests that are well known to be difficult to control. However, the mechanisms governing the non-host status of cavalcade is unknown. The current study established that cavalcade leaves are toxic to RKN as either aqueous extracts or soil amendments. Bioassays conducted using Meloidogyne javanica showed that a 90% concentration of aqueous extract derived from 1-month-old cavalcade leaves (89 mg crude extract ml−1) suppressed nematode hatch (82.9%) and killed infective second-stage juveniles of M. javanica (85.3%). Soil amendments with 1% (w/w) of 1-month-old cavalcade leaves (0.99 mg crude extract g−1 soil) also provided effective control of M. javanica in the glasshouse on okra. One-month-old leaves appeared more effective than 2- or 3-month-old leaves. The soil amendments had no adverse phytotoxic effect on okra seed germination. Our study demonstrates the potential for using cavalcade leaves or extracts to manage RKN. This may be due to the nematicidal activity of the various compounds in the leaves, such as flavonoids, phenols and terpenoids, which should be further assessed.

To document

Abstract

Processing of 1000 kg of fresh Kappaphycus alvarezii yielded 25 kg salt. The optical microscopy revealed non-crystalline nature, absence of geometrical pattern; while squircle aggregates with ruffled surface were evident in SEM. Caenorhabditis elegans assay confirmed its non-toxicity; while absence of Salmonella and pesticides make it safe for human consumption. Among the macro elements, ‘K' content was highest (3792.74 ± 541.23 mg 100 g−1) and ‘Ca’ was lowest (7.01 ± 1.32 mg 100 g−1); whereas among micro element ‘Fe’ was highest (6.52 ± 1.40 mg 100 g−1) and ‘Ni’ lowest (0.14 ± 0.01 mg 100 g−1). Chromium (11.5 μg g−1) was lower than a permissible daily dose, while other heavy metals (Mo, Cu, Co, Zn, As, Cd, Hg, and Pb) were below detectable level. PXRD revealed that it has only KCl Form I. The study suggested potential economic utility of seaweed salt under the framework of waste to wealth.