Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Renewable energy in the form of biogas can be produced by anaerobic digestion (AD) of animal manure. However, there is still a lack of knowledge on the long-term effects of AD-treated manure on soil characteristics and crop productivity, compared with untreated manure. A field experiment was established in a perennial grass-clover ley in 2011 to study the effects on important soil and crop characteristics when the slurry from a herd of organically managed dairy cows is anaerobically digested. While the rate of manure application affected soil concentrations of extractable nutrients and pH, these variables were unaffected by AD. Soil organic matter (SOM) concentrations decreased in all plots and faster on the plots with high intrinsic SOM. The decrease was similar with application of untreated (non-digested) slurry (US) and anaerobically digested slurry (ADS), and it was not affected by application rates. The general decline may be explained by the initial high SOM content, the long-term effect of drainage, and higher temperatures with climatic change. US and ADS gave similar yields of grass-clover ley (2 cuts/year) and green fodder, on average 0.79 and 0.40 kg DM m−2, respectively. Clover yield was similar in manured treatments and the non-fertilized control. With respect to crop yields and chemical soil characteristics, long-term (10 years) effects of AD in an organic dairy cow farming system seem to be minor. The benefits of extracting energy from the slurry did not compromise grassland productivity or soil quality in the long term.

To document

Abstract

This study quantifies golf course pesticide risk in five regions across the US (Florida, East Texas, Northwest, Midwest, and Northeast) and three countries in Europe (UK, Denmark, and Norway) with the objective of determining how pesticide risk on golf courses varied as a function of climate, regulatory environment, and facility-level economic factors. The hazard quotient model was used to estimate acute pesticide risk to mammals specifically. Data from 68 golf courses are included in the study, with a minimum of at least five golf courses in each region. Though the dataset is small, it is representative of the population at confidence level of 75 % with a 15 % margin of error. Pesticide risk appeared to be similar across US regions with varied climates, and significantly lower in the UK, and lowest in Norway and Denmark. In the Southern US (East Texas and Florida), greens contribute most to total pesticide risk while in nearly all other regions fairways make the greatest contribution to overall pesticide risk. The relationship between facility-level economic factors such as maintenance budget was limited in most regions of the study, except in the Northern US (Midwest, Northwest, and Northeast) where maintenance and pesticide budget correlated to pesticide risk and use intensity. However, there was a strong relationship between regulatory environment and pesticide risk across all regions. Pesticide risk was significantly lower in Norway, Denmark, and the UK, where twenty or fewer active ingredients were available to golf course superintendents, than it was in US where depending on the state between 200 and 250 pesticide active ingredients were registered for use on golf courses.

To document

Abstract

Currently global seaweed industries are facing issue with availability of raw material for processing of carrageenan due to low growth of current planting material. Use of biostimulants in seaweed cultivation is recently paid more attention due to their proven biostimulatory effect, of which, Ascophyllum marine plant extract powder (AMPEP) is a well proven biostimulant to improve the growth and quality of Kappaphycus alvarezii biomass. Hence, 500 kg of AMPEP was purchased and studied its impact on the commercial farming of K. alvarezii from April 2018 to January 2022 in India. Vegetative propagule of K. alvarezii were dipped in an AMPEP with concentration range of: 0.025, 0.05, 0.10, 0.15, 0.20 and 0.25 % for 30, 60, 90 and 120 min. Before out-planting on rafts in shallow coastal water and found that K. alvarezii responded well to a 0.1 % solution with dipping time of 60 min. The percentage of average daily growth rate (ADGR%) of AMPEP-treated plant in a 45 d grow out period was 3.50 ± 0.50 % vs a control of 1.75 ± 0.25 % for the summer and pre-monsoon months (p < 0.05) but no statistically significant differences between the treated and control plants were found during the rainy and winter seasons. Treated plants were found with low incidence of epiphytes, and disease as compared to control plants. The general appearance and health of treated Kappaphycus was good with significant differences in the yield and quality of semi-refined carrageenan (SRC) and dry weed quality (p < 0.05). The cost of AMPEP for producing of additional 1 kg of dry Kappaphycus was 0.066USD. Results of the present study is very encouraging and AMPEP can be used for the production of K. alvarezii biomass for industrial and biorefinery processing as it has been witnessed that there was 16.66 % increase in biomass production in 2021in India.

To document

Abstract

Landscape ecology is repeatedly described as an applied science that can help reduce the negative effects of land-use and land-use changes on biodiversity. However, the extent to which landscape ecology is in fact contributing to planning and design processes is questioned. The aim of this paper is to investigate if and how landscape ecology can be integrated in a planning and design process, and to uncover possible problems that, e.g., landscape architects and planners, may face in such processes. Our conclusion, based on a case study from Asker municipality, Norway, is that such a landscape ecological approach has a lot to offer. However, it is difficult to exploit the potential fully for different reasons, e.g., biodiversity information tends to be specialized, and not easily used by planners and designers, and landscape ecological principles need an adaptation process to be applicable in a real-world situation. We conclude that for the situation to improve, landscape ecologists need to ease this process. In addition, we recommend collaboration across disciplinary boundaries, preferably with a common design concept as a foundation.