Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Denne rapporten oppsummerer foreløpige resultater fra 2020 i IPM-Golf-prosjektet "Ingergrated Management of Important Turfgrass Diseases and Insect Pests on European Golf-Courses" Feltforsøk på Microdochium flekk ble utført i Landvik, Norge og Bingley, Storbritannia. På Landvik viste resultatene at rulling ved lav N og sitronsyre, tilført fra aug.-okt. kan redusere Microdochium flekk til en viss grad blant de ikke-kjemiske behandlingene. Høy N resulterte i mer Mikrodochium flekk, men mindre antraknose. På Bingley viste resultatene at behandlingene som inneholder jernsulfat spesielt høyt jern, lyktes med å kontrollere sykdommen, men effekten varte ikke gjennom vinteren. Feltforsøkene ved Kjøpenhavns Golf Club viste at rulling to ganger i uken forbedret kvaliteten på greens gjennom vekstsesongen og at reduksjon av Microdochium flekk ble oppnådd ved å rulle fra august til desember. Feltforsøkene med UV-C-stråling ved Osnabrück Golf Club viste at denne metoden kunne kontrollere, men ikke bekjempe fullstendig dollar spot. Litteraturgjennomgangen om myrstankelbein og hageoldenborre viste at problemene varierer sterkt mellom år og de ulike landene.

Abstract

Harvest Weed Seed Control (HWSC) systems are used to collect and/or kill weed seeds in the chaff fraction during grain harvest. While collecting chaff reduces the weed infestation in the following years, a new biomass feedstock is created. Chaff mainly consists of husk and straw. There is a potential energetic utilization of chaff. It can also be used as a material for construction (e.g., insulating boards, cardboard, bedding), soil improvement (e.g., mulch, mushroom compost) and agricultural use (e.g., weed growth inhibitor, animal diet). Using chaff directly is unfavorable because of low bulk density; therefore, compressing chaff into pellets optimizes its handling. We have assessed how pelletizing would affect germination of weed seeds bearing in the chaff if the collected chaff is pelletized for further utilization. To test this, we mixed original wheat chaff and fine wheat chaff (pretreated by sieving) with each of the weed species Tripleurospermum inodorum and Centarea cyanus seeds separately. Approximately 2000 seeds of each weed species were added to 2500 g of chaff (20 % moisture). Samples were pelletized using the Kahl Pelleting Press 14-175. Each treatment was replicated four times. Afterwards pelletized samples were spread evenly on the soil surface in 14 × 16 cm boxes and covered by a thin layer of soil/sand. Unpelletized chaff samples were used as control. Boxes were placed in greenhouse and watered from the bottom and seed germination was followed for a month. While on average 22 and 59 % seed germination of T. inodorum and C. cyanus were observed in wheat chaff control samples respectively, no weed seed germination was observed in pelletized fine and original wheat chaff samples. Consequently, we find that the pelletizing process of collected chaff destroys the weed seeds in it.

To document

Abstract

The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.