Våre poenggivende vitenskapelige publikasjoner

Listen inneholder vitenskapelige artikler, bøker og kapitler som er publisert i poenggivende tidsskrifter og forlag. Det nasjonale registeret over vitenskapelige tidsskrifter er utgangspunktet for hvilke vitenskapelige publikasjoner som gir uttelling i finansieringssystemet. Listen er sortert etter siste registrerte publikasjon.

2022 (136)

Til dokument

Sammendrag

Global land use change has resulted in more pasture and cropland, largely at the expense of woodlands, over the last 300 years. How this change affects soil hydraulic function with regard to feedbacks to the hydrological cycle is unclear for earth system modelling (ESM). Pedotransfer functions (PTFs) used to predict soil hydraulic conductivity (K) take no account of land use. Here, we synthesize >800 measurements from around the globe from sites that measured near-saturated soil hydraulic conductivity, or infiltration, at the soil surface, on the same soil type at each location, but with differing land use, woodland (W), grassland (G) and cropland (C). We found that texture based PTFs predict K reasonably well for cropland giving unbiased results, but increasingly underestimate K in grassland and woodland. In native woodland and grassland differences in K can usually be accounted for by differences in bulk density. However, heavy grazing K responses can be much lower indicating compaction likely reduces connectivity. We show that the K response ratios (RR) between land uses vary with cropland (C/W = 0.45 [W/C = 2.2]) and grassland (G/W = 0.63 [W/G = 1.6]) having about half the K of woodland.

Til dokument

Sammendrag

Litter comprises a major nutrient source when decomposed via soil microbes and functions as subtract that limits gas exchange between soil and atmosphere, thereby restricting methane (CH4) uptake in soils. However, the impact and inherent mechanism of litter and its decomposition on CH4 uptake in soils remains unknown in forest. Therefore, to declare the mechanisms of litter input and decomposition effect on the soil CH4 flux in forest, this study performed a litter-removal experiment in a tropical rainforest, and investigated the effects of litter input and decomposition on the CH4 flux among forest ecosystems through a literature review. Cumulative annual CH4 flux was −3.30 kg CH4-C ha−1 y−1. The litter layer decreased annual accumulated CH4 uptake by 8% which greater in the rainy season than the dry season in the tropical rainforest. Litter decomposition and the input of carbon and nitrogen in litter biomass reduced CH4 uptake significantly and the difference in CH4 flux between treatment with litter and without litter was negatively associated with N derived from litter input. Based on the literature review about litter effect on soil CH4 around world forests, the effect of litter dynamics on CH4 uptake was regulated by litter-derived nitrogen input and the amount soil inorganic nitrogen content. Our results suggest that nitrogen input via litter decomposition, which increased with temperature, caused a decline in CH4 uptake by forest soils, which could weaken the contribution of the forest in mitigating global warming.

Til dokument

Sammendrag

Prediction of the relative phosphorus (P) fertiliser value of bio-based fertiliser products is agronomically important, but previous attempts to develop prediction models have often failed due to the high chemical complexity of bio-based fertilisers and the limited number of products included in analyses. In this study, regression models for prediction were developed using independently produced data from 10 different studies on crop growth responses to P applied with bio-based fertiliser products, resulting in a dataset with 69 products. The 69 fertiliser products were organised into four sub-groups, based on the inorganic P compounds most likely to be present in each product. Within each product group, multiple regression was conducted using mineral fertiliser equivalents (MFE) as response variable and three potential explanatory variables derived from chemical analysis, all reflecting inorganic P binding in the fertiliser products: i) NaHCO3-soluble P, ii) molar ratio of calcium (Ca):P and iii) molar ratio of aluminium+iron (Al+Fe):P. The best regression model fit was achieved for sewage sludges with Al-/Fe-bound P (n = 20; R2 = 79.2%), followed by sewage sludges with Ca-bound P (n = 11; R2 = 71.1%); fertiliser products with Ca-bound P (n = 29; R2 = 58.2%); and thermally treated sewage sludge products (n=9;R2=44.9%). Even though external factors influencing P fertiliser values (e.g. fertiliser shape, application form, soil characteristics) differed between the underlying studies and were not considered, the suggested prediction models provide potential for more efficient P recycling in practice.

Til dokument

Sammendrag

The amount of lignocellulose biomass and sludge is enormous, so it is of great significance to find a treatment combining the two substances. Co-hydrothermal carbonization (Co-HTC) has emerged as an efficient approach to dispose sludge. However, the improvement of sludge upgrading and combustion performance remains an important challenge during the Co-HTC of sludge. In this work, the Co-HTC of sludge and Fenton's reagent at different mixing ratios was proposed to achieve sludge reduction. Moreover, the addition of two kinds of biomass improved the adsorption capacity and combustion performance of hydrochars. When sludge and sawdust were the Co-HTC at the mass ratio of 1:3, the liquid phase Pb concentration decreased notably to 18.06%. Furthermore, the adsorption capacity of hydrochars was further improved by modification, which was in accordance with pseudo-second-order kinetics. Particularly, the hydrochars derived from the Co-HTC had higher heating value (HHV) and could be used as a clean fuel. This study proposed a new technical route of combining the HTC with Fenton's reagent and lignocellulose biomass, which could be served as a cleaner and eco-friendly treatment of sludge.

Til dokument

Sammendrag

Knowledge about the spatial variation of boreal forest soil carbon (C) stocks is limited, but crucial for establishing management practices that prevent losses of soil C. Here, we quantified the surface soil C stocks across small spatial scales, and aim to contribute to an improved understanding of the drivers involved in boreal forest soil C accumulation. Our study is based on C analyses of 192 soil cores, positioned and recorded systematically within a forest area of 11 ha. The study area is a south-central Norwegian boreal forest landscape, where the fire history for the past 650 years has been reconstructed. Soil C stocks ranged from 1.3 to 96.7 kg m−2 and were related to fire frequency, ecosystem productivity, vegetation attributes, and hydro-topography. Soil C stocks increased with soil nitrogen concentration, soil water content, Sphagnum- and litter-dominated forest floor vegetation, and proportion of silt in the mineral soil, and decreased with fire frequency in site 1, feathermoss- and lichen-dominated forest floor vegetation and increasing slope. Our results emphasize that boreal forest surface soil C stocks are highly variable in size across fine spatial scales, shaped by an interplay between historical forest fires, ecosystem productivity, forest floor vegetation, and hydro-topography.

Sammendrag

The number of people affected by snow avalanches during recreational activities has increased over the recent years. An instrument to reduce these numbers are improved terrain classification systems. One such system is the Avalanche Terrain Exposure Scale (ATES). Forests can provide some protection from avalanches, and information on forest attributes can be incorporated into avalanche hazard models such as the automated ATES model (AutoATES). The objectives of this study were to (i) map forest stem density and canopy-cover based on National Forest Inventory and remote sensing data and, (ii) use these forest attributes as input to the AutoATES model. We predicted stem density and directly calculated canopy-cover in a 20 Mha study area in Norway. The forest attributes were mapped for 16 m × 16 m pixels, which were used as input for the AutoATES model. The uncertainties of the stem number and canopy-cover maps were 30% and 31%, respectively. The overall classification accuracy of 52 ski-touring routes in Western Norway with a total length of 282 km increased from 55% in the model without forest information to 67% when utilizing canopy cover. The F1 score for the three predicted ATES classes improved by 31%, 9%, and 6%.

Sammendrag

In a fertiliser experiment in a Norway spruce forest in SE Norway, four treatments were applied in a block design with three replicates per treatment. Treatments included 3 t wood ash ha−1 (Ash), 150 kg nitrogen ha−1 (N), wood ash and nitrogen combined (Ash + N), and unfertilised control (Ctrl). Treatment effects on understory plant species numbers, single abundances of species and (summarised) cover of main species groups were studied. Two years after treatment there were no significant changes for species numbers or abundances of woody species, dwarf shrubs or pteridophytes, nor for Sphagnum spp. in the bottom layer. The cover of graminoids decreased in Ctrl plots. Herb cover increased significantly in Ash + N and N plots due to the increase of Melampyrum sylvaticum. In Ash + N plots, mosses decreased significantly in species number, while their cover increased. Moss cover also decreased significantly in N plots. The species number and cover of hepatics decreased significantly in Ash and Ash + N plots. Hepatics cover also decreased in Ctrl plots. Both the lichen number and cover decreased in Ash + N plots. Single species abundances decreased for many bryophytes in fertilised plots. To conclude, fertilisation had modest effects on vascular plants, while bryophytes were more strongly affected, especially by Ash + N.

Sammendrag

Stand-level growth and yield models are important tools that support forest managers and policymakers. We used recent data from the Norwegian National Forest Inventory to develop stand-level models, with components for dominant height, survival (number of survived trees), ingrowth (number of recruited trees), basal area, and total volume, that can predict long-term stand dynamics (i.e. 150 years) for the main species in Norway, namely Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula pubescens Ehrh. and Betula pendula Roth). The data used represent the structurally heterogeneous forests found throughout Norway with a wide range of ages, tree size mixtures, and management intensities. This represents an important alternative to the use of dedicated and closely monitored long-term experiments established in single species even-aged forests for the purpose of building these stand-level models. Model examination by means of various fit statistics indicated that the models were unbiased, performed well within the data range and extrapolated to biologically plausible patterns. The proposed models have great potential to form the foundation for more sophisticated models, in which the influence of other factors such as natural disturbances, stand structure including species mixtures, and management practices can be included.

Til dokument

Sammendrag

Due to the diversity of microbiota and the high complexity of their interactions that mediate biogas production, a detailed understanding of the microbiota is essential for the overall stability and performance of the anaerobic digestion (AD) process. This study evaluated the microbial taxonomy, metabolism, function, and genetic differences in 14 full-scale biogas reactors and laboratory reactors operating under various conditions in China. This is the first known study of the microbial ecology of AD at food waste (FW) at a regional scale based on multi-omics (16S rRNA gene amplicon sequencing, metagenomics, and proteomics). Temperature significantly affected the bacterial and archaeal community structure (R2 = 0.996, P = 0.001; R2 = 0.846, P < 0.002) and total inorganic carbon(TIC) slightly changed the microbial structure (R2 = 0.532, P = 0.005; R2 = 0.349, P = 0.016). The Wood-Ljungdahl coupled with hydrogenotrophic methanogenic pathways were dominant in the thermophilic reactors, where the acs, metF, cooA, mer, mch and ftr genes were 10.1-, 2.8-, 16.2-, 1.74-, 4.15-, 1.04-folds of the mesophilic reactors (P < 0.01). However, acetoclastic and methylotrophic methanogenesis was the primary pathway in the mesophilic reactors, where the ackA, pta, cdh and mta genes were 2.2-, 3.2-, 14.3-, 1.88-folds of the thermophilic group (P < 0.01). Finally, the Wilcoxon rank-sum test was applied to explain the cause of the temperature affecting AD microbial activities. The findings have deepened the understanding of the effect of temperature on AD microbial ecosystems and are expected to guide the construction and management of full-scale FW biogas plants.

Til dokument

Sammendrag

The alpine treeline ecotone is expected to move upwards in elevation with global warming. Thus, mapping treeline ecotones is crucial in monitoring potential changes. Previous remote sensing studies have focused on the usage of satellites and aircrafts for mapping the treeline ecotone. However, treeline ecotones can be highly heterogenous, and thus the use of imagery with higher spatial resolution should be investigated. We evaluate the potential of using unmanned aerial vehicles (UAVs) for the collection of ultra-high spatial resolution imagery for mapping treeline ecotone land covers. We acquired imagery and field reference data from 32 treeline ecotone sites along a 1100 km latitudinal gradient in Norway (60–69°N). Before classification, we performed a superpixel segmentation of the UAV-derived orthomosaics and assigned land cover classes to segments: rock, water, snow, shadow, wetland, tree-covered area and five classes within the ridge-snowbed gradient. We calculated features providing spectral, textural, three-dimensional vegetation structure, topographical and shape information for the classification. To evaluate the influence of acquisition time during the growing season and geographical variations, we performed four sets of classifications: global, seasonal-based, geographical regional-based and seasonal-regional-based. We found no differences in overall accuracy (OA) between the different classifications, and the global model with observations irrespective of data acquisition timing and geographical region had an OA of 73%. When accounting for similarities between closely related classes along the ridge-snowbed gradient, the accuracy increased to 92.6%. We found spectral features related to visible, red-edge and near-infrared bands to be the most important to predict treeline ecotone land cover classes. Our results show that the use of UAVs is efficient in mapping treeline ecotones, and that data can be acquired irrespective of timing within a growing season and geographical region to get accurate land cover maps. This can overcome constraints of a short field-season or low-resolution remote sensing data.

Til dokument

Sammendrag

Numerous species of pathogenic wood decay fungi, including members of the genera Heterobasidion and Armillaria, exist in forests in the northern hemisphere. Detection of these fungi through field surveys is often difficult due to a lack of visual symptoms and is cost-prohibitive for most applications. Remotely sensed data can offer a lower-cost alternative for collecting information about vegetation health. This study used hyperspectral imagery collected from unmanned aerial vehicles (UAVs) to detect the presence of wood decay in Norway spruce (Picea abies L. Karst) at two sites in Norway. UAV-based sensors were tested as they offer flexibility and potential cost advantages for small landowners. Ground reference data regarding pathogenic wood decay were collected by harvest machine operators and field crews after harvest. Support vector machines were used to classify the presence of root, butt, and stem rot infection. Classification accuracies as high as 76% with a kappa value of 0.24 were obtained with 490-band hyperspectral imagery, while 29-band imagery provided a lower classification accuracy (~60%, kappa = 0.13).

Til dokument

Sammendrag

Groundwater utilization and groundwater quality vary in the Baltic and Nordic countries mainly because of different geological settings. Based on the geology, the countries were treated in the following three groups: (1) Fennoscandian countries (Finland, Sweden, and Norway), (2) Denmark and Baltic countries (Estonia, Latvia, and Lithuania), and (3) Iceland. Most of the utilized groundwater resources are taken from Quaternary deposits, but Denmark and the Baltic countries have in addition, important resources in Phanerozoic rocks. The groundwater quality reflects the residence time of water in the subsurface and the chemical composition of the geological formations. Concentrations of ions in the Fennoscandian bedrock are elevated compared to Iceland, but lower than in Denmark and the Baltic countries. Compared to groundwater in the bedrock, groundwater in Quaternary deposits has usually lower concentrations of dissolved minerals. Unconfined Quaternary aquifers are vulnerable to contamination. Examples from Denmark and the Baltic countries illustrate challenges and successful effects of mitigation strategies for such aquifers related to agricultural application and management of nitrogen. Confined and deeper groundwater is better protected against anthropogenic contamination, but water quality may be affected by harmful compounds caused by geogenic processes (viz, sulfide, arsenic, fluoride, and radon).

Sammendrag

The Copernicus high-resolution layer imperviousness density (HRL IMD) for 2018 is a 10 m resolution raster showing the degree of soil sealing across Europe. The imperviousness gradation (0–100%) per pixel is determined by semi-automated classification of remote sensing imagery and based on calibrated NDVI. The product was assessed using a within-pixel point sample of ground truth examined on very high-resolution orthophoto for the section of the product covering Norway. The results show a high overall accuracy, due to the large tracts of natural surfaces correctly portrayed as permeable (0% imperviousness). The total sealed area in Norway is underestimated by approximately 33% by HRL IMD. Point sampling within pixels was found to be suitable for verification of remote sensing products where the measurement is a binomial proportion (e.g., soil sealing or canopy coverage) when high-resolution aerial imagery is available as ground truth. The method is, however, vulnerable to inaccuracies due to geometrical inconsistency, sampling errors and mistaken interpretation of the ground truth. Systematic sampling inside each pixel is easy to work with and is known to produce more accurate estimates than a simple random sample when spatial autocorrelation is present, but this improvement goes unnoticed unless the status and location of each sample point inside the pixel is recorded and an appropriate method is applied to estimate the within-pixel sampling accuracy.

Til dokument

Sammendrag

Active crop sensor-based precision nitrogen (N) management can significantly improve N use efficiency but generally does not increase crop yield. The objective of this research was to develop and evaluate an active canopy sensor-based precision rice management system in terms of grain yield and quality, N use efficiency, and lodging resistance as compared with farmer practice, regional optimum rice management system recommended by the extension service, and a chlorophyll meter-based precision rice management system. Two field experiments were conducted from 2011 to 2013 at Jiansanjiang Experiment Station of China Agricultural University in Heilongjiang, China, involving four rice management systems and two varieties (Kongyu 131 and Longjing 21). The results indicated that the canopy sensor-based precision rice management system significantly increased rice grain yield (by 9.4–13.5%) over the farmer practice while improving N use efficiency, grain quality, and lodging resistance. Compared with the already optimized regional optimum rice management system, in the cool weather year of 2011, the developed system decreased the N rate applied in Kongyu 131 by 12% and improved N use efficiency without inducing yield loss. In the warm weather year of 2013, the canopy sensor-based management system recommended an 8% higher N rate to be applied in Longjing 21 than the regional optimum rice management, which improved rice panicle number per unit area and eventually led to increased grain yield by over 10% and improved N use efficiency. More studies are needed to further test the developed active canopy sensor-based precision rice management system under more diverse on-farm conditions and further improve it using unmanned aerial vehicle or satellite remote sensing technologies for large-scale applications.

Til dokument

Sammendrag

The demand for meat products is rising globally. A potential substitute for meat is synthetic meat, meat produce d in the laboratory. Synthetic meat is not in the market yet due to high production costs and regulatory issues, but it will probably be available during the next decade. If cheap and popular it may crowd out the demand and production of farmed meat and herby affect farmers income. In this study we have used data from a choice experiment in Norway to construct price and income elasticities for synthetic meat with three different assumptions. The data shows that half of the population does not accept synthetic meat. They will not buy it whatever the price. The own-price elasticities were estimated to be in the interval [-0.47,-0.08] and the cross-price elasticities were in the interval [0.09,0.40]. The income elasticities were all close to 0. If these elasticities were valid in a situation in which synthetic meat is available on the market, we could infer that the market for synthetic meat is limited.

Til dokument

Sammendrag

Rapid methods allowing for non-destructive crop monitoring are imperative for accurate in-season nitrogen (N) status assessment and precision N management. The objectives of this paper were to (1) compare the performance of a leaf fluorescence sensor Dualex 4 and an active canopy reflectance sensor Crop Circle ACS-430 for estimating maize (Zea mays L.) N status indicators across growth stages; (2) evaluate the potential of N status prediction across growth stages using the reflectance parameters acquired from the canopy sensor at an early growth stage; and, (3) investigate the prospect of combining the active canopy sensor and leaf fluorescence sensor data to estimate N nutrition index (NNI) indirectly using a general model across growth stages. The results indicated that data from both sensors were closely related to NNI across stages. However, using the direct NNI estimation method, among the tested indices, only the N balance index (NBI) could diagnose N status satisfactorily, based on the Kappa statistics. The effect of growth stages on proximal sensing was reduced by incorporating the information of days after sowing. It was found that the leaf fluorescence sensor performed relatively better in estimating plant N concentration whereas the canopy reflectance sensor performed better in aboveground biomass estimation. Their combination significantly improved the reliability of N diagnosis, including NNI prediction. In addition, the study confirmed that N status can be assessed by predicting aboveground biomass at the later stages using the canopy reflectance measurements at an early stage. Furthermore, the integrated NBI was verified to be a more robust and sensitive N status indicator than the chlorophyll concentration index. It is concluded that combining active canopy sensor data, of an early growth stage (e.g. V8), with leaf fluorescence sensor data, modified using days after sowing, can improve the accuracy of corn N status diagnosis across growth stages.

Sammendrag

Tree defense against xylem pathogens involves both constitutive and induced phenylpropanoids and terpenoids. The induced defenses include compartmentalization of compromised wood with a reaction zone (RZ) characterized by polyphenol deposition, whereas the role of terpenoids has remained poorly understood. To further elucidate the tree–pathogen interaction, we profiled spatial patterns in lignan (low-molecular-weight polyphenols) and terpenoid content in Norway spruce (Picea abies) trees showing heartwood colonization by the pathogenic white-rot fungus Heterobasidion parviporum. There was pronounced variation in the amount and composition of lignans between different xylem tissue zones of diseased and healthy trees. Intact RZ at basal stem regions, where colonization is the oldest, showed the highest level and diversity of these compounds. The antioxidant properties of lignans obviously hinder oxidative degradation of wood: RZ with lignans removed by extraction showed significantly higher mass loss than unextracted RZ when subjected to Fenton degradation. The reduced diversity and amount of lignans in pathogen-compromised RZ and decaying heartwood in comparison to intact RZ and healthy heartwood suggest that α-conindendrin isomer is an intermediate metabolite in lignan decomposition by H. parviporum. Diterpenes and diterpene alcohols constituted above 90% of the terpenes detected in sapwood of healthy and diseased trees. A significant finding was that traumatic resin canals, predominated by monoterpenes, were commonly associated with RZ. The findings clarify the roles and fate of lignan during wood decay and raise questions about the potential roles of terpenoids in signal transduction, synthesis, and translocation of defense compounds upon wood compartmentalization against decay fungi.

Til dokument

Sammendrag

Mountain birch forest covers large areas in Eurasia, and their ecological resilience provides important ecosystem services to human societies. This study describes long-term stand dynamics based on permanent plots in the upper mountain birch belt in SE Norway. We also present forest line changes over a period of 70 years. Inventories were conducted in 1931, 1953, and 2007. Overall, there were small changes from 1931 up to 1953 followed by a marked increase in biomass and dominant height of mountain birch throughout the period from 1953 to 2007. In addition, the biomass of spruce (Picea abies) and the number of plots with spruce present doubled. The high mortality rate of larger birch stems and large recruitment by sprouting since the 1960s reveal recurrent rejuvenation events after the earlier outbreak of the autumnal moth (Epirrita autumnata). Our results demonstrate both a high stem turnover in mountain birch and a great ability to recover after disturbances. This trend is interpreted as regrowth after a moth attack, but also long-term and time-lagged responses due to slightly improved growth conditions. An advance of the mountain birch forest line by 0.71 m year−1 from 1937 to 2007 was documented, resulting in a total reduction of the alpine area by 12%. Most of the changes in the forest line seem to have taken place after 1960. Regarding silviculture methods in mountain birch, a dimension cutting of larger birch trees with a cutting interval of c. 60 years seems to be a sustainable alternative for mimicking natural processes.

Til dokument

Sammendrag

Norway spruce (Picea abies) is an economically and ecologically important tree species that grows across northern and central Europe. Treating Norway spruce with jasmonate has long-lasting beneficial effects on tree resistance to damaging pests, such as the European spruce bark beetle Ips typographus and its fungal associates. The (epi)genetic mechanisms involved in such long-lasting jasmonate induced resistance (IR) have gained much recent interest but remain largely unknown. In this study, we treated 2-year-old spruce seedlings with methyl jasmonate (MeJA) and challenged them with the I. typographus vectored necrotrophic fungus Grosmannia penicillata. MeJA treatment reduced the extent of necrotic lesions in the bark 8 weeks after infection and thus elicited long-term IR against the fungus. The transcriptional response of spruce bark to MeJA treatment was analysed over a 4-week time course using mRNA-seq. This analysis provided evidence that MeJA treatment induced a transient upregulation of jasmonic acid, salicylic acid and ethylene biosynthesis genes and downstream signalling genes. Our data also suggests that defence-related genes are induced while genes related to growth are repressed by methyl jasmonate treatment. These results provide new clues about the potential underpinning mechanisms and costs associated with long-term MeJA-IR in Norway spruce.

Til dokument

Sammendrag

Control of grey mould, caused by Botrytis spp., is a major challenge in open field strawberry production. Botrytis was isolated from plant parts collected from 19 perennial strawberry fields with suspected fungicide resistance in the Agder region of Norway in 2016. Resistance to boscalid, pyraclostrobin and fenhexamid was high and found in 89.1%, 86.0% and 65.4% of conidia samples, respectively. Multiple fungicide resistance was common; 69.6% of conidia samples exhibited resistance to three or more fungicides. Botrytis group S and B. cinerea sensu stricto isolates were obtained from 19 and 16 fields, respectively. The sdhB, cytb, erg27 and mrr1 genes of a selection of isolates were examined for the presence of mutations known to confer fungicide resistance to boscalid, pyraclostrobin, fenhexamid and pyrimethanil plus fludioxonil, respectively. Allele-specific PCR assays were developed for efficient detection of resistance-conferring mutations in cytb. Among B. cinerea isolates, 84.7%, 86.3% and 61.3% had resistance-conferring mutations in sdhB, cytb and erg27, respectively. A triplet deletion in mrr1, resulting in ΔL497, commonly associated with the multidrug resistance phenotype MDR1h, was detected in 29.2% of Botrytis group S isolates. High frequencies of resistance to several fungicides were also detected in Botrytis from both imported and domestically produced strawberry transplants. Fungicide resistance frequencies were not different among fields grouped by level of grey mould problem assessed by growers, indicating factors other than fungicide resistance contributed to control failure, a fact that has important implications for future management of grey mould.

Til dokument

Sammendrag

We determined the mitogenome of Cyclopterus lumpus using a hybrid sequencing approach, and another four closely related species in the Liparidae based on available next-generation sequence data. We found that the mitogenome of C. lumpus was 17,266 bp in length, where the length and organisation were comparable to those reported for cottoids. However, we found a GC-homopolymer region in the intergenic space between tRNALeu2 and ND1 in liparids and cyclopterids. Phylogenetic reconstruction confirmed the monophyly of infraorders and firmly supported a sister-group relationship between Cyclopteridae and Liparidae. Purifying selection was the predominant force in the evolution of cottoid mitogenomes. There was significant evidence of relaxed selective pressures along the lineage of deep-sea fish, while selection was intensified in the freshwater lineage. Overall, our analysis provides a necessary expansion in the availability of mitogenomic sequences and sheds light on mitogenomic adaptation in Cottoidei fish inhabiting different aquatic environments.

Til dokument

Sammendrag

Strawberry powdery mildew, caused by Podosphaera aphanis, can be particularly destructive in glasshouse and plastic tunnel production systems, which generally are constructed of materials that block ultraviolet (UV) solar radiation (about 280 to 400 nm). We compared epidemic progress in replicated plots in open fields and under tunnels constructed of polyethylene, which blocks nearly all solar UV-B, and two formulations of ethylene tetrafluoroethylene (ETFE), one of which contained a UV blocker and another that transmitted nearly 90% of solar UV-B. Disease severity under all plastics was higher than in open-field plots, indicating a generally more favorable environment in containment structures. However, the foliar severity of powdery mildew within the tunnels was inversely related to their UV transmissibility. Among the tunnels tested, incidence of fruit infection was highest under polyethylene and lowest under UV-transmitting ETFE. These effects probably transcend crop, and the blocking of solar UV transmission by glass and certain plastics probably contributes to the widely observed favorability of greenhouse and high-tunnel growing systems for powdery mildew.

Til dokument

Sammendrag

Until recently, genotypes of Phytophthora infestans were regionally distributed in Europe, with populations in western Europe being dominated by clonal lineages and those in northern Europe being genetically diverse because of frequent sexual reproduction. However, since 2013 a new clonal lineage (EU_41_A2) has successfully established itself and expanded in the sexually recombining P. infestans populations of northern Europe. The objective of this study was to study phenotypic traits of the new clonal lineage of P. infestans, which may explain its successful establishment and expansion within sexually recombining populations. Fungicide sensitivity, aggressiveness, and virulence profiles of isolates of EU_41_A2 were analyzed and compared with those of the local sexual populations from Denmark, Norway, and Estonia. None of the phenotypic data obtained from the isolates collected from Denmark, Estonia, and Norway independently explained the invasive success of EU_41_A2 within sexual Nordic populations. Therefore, we hypothesize that the expansion of this new genotype could result from a combination of fitness traits and more favorable environmental conditions that have emerged in response to climate change.

Sammendrag

The visual impacts of landscape change are important for how people perceive landscapes and whether they consider changes to be positive or negative. Landscape photographs and photographs of landscape elements may capture information about the visual qualities of landscapes and can also be used to illustrate, and even to quantify, how these visual qualities change over time. We developed a methodology for a monitoring scheme, based on taking photographs from exactly the same locations at different points in time. We tested two methods: one where fieldworkers chose freely the location and direction of photographs, and one where photo locations and four out of five directions were predefined. We found that the method using predefined locations provided a representative sample of the visual qualities present in the landscape and was relatively person-independent but missed rare landscape components. The method using free selection of photo locations and directions captured rarities, but the content of the photos varied from photographer to photographer. Considering the strengths and weaknesses of the two approaches, we recommend a method that combines aspects of both when establishing a monitoring scheme based on repeat photography, with predefined locations to ensure that the entire area is covered, and additional freely chosen photo locations to capture special subject matter that would otherwise be missed.

Til dokument

Sammendrag

Despite the increasing interest in applying composts as soil amendments worldwide, there is a lack of knowledge on short-term effects of compost amendments on soil structural and hydraulic properties. Our goal was to study the effect of compost and vermicompost-based soil amendments on soil structure, soil water retention characteristics, aggregate stability and plant water use efficiency compared to that of mineral fertilizers and food-waste digestate and examine if these effects are evident within a short time after application. We set up a pot experiment with spring wheat using a sandy and a loamy soil receiving either mineral fertilizer (MF); dewatered digestate from anaerobic digestion of food waste (DG), vermicomposted digestate (VC_DG); sewage sludge-based compost (C_SS) and sewage sludge-based vermicompost (VC_SS). We then monitored and calculated the soil water balance components (irrigation, outflow, evaporation, transpiration, and soil water content). At harvest, we measured shoot biomass, soil texture, bulk density, water retention characteristics and aggregate stability. The irrigation use efficiency (IE) and the plant water use efficiency (WUE) were calculated for each treatment by dividing the transpiration and the dry shoot biomass with the amount of water used for irrigation, respectively. For the sandy soil, we used X-Ray computed tomography to visualise the pore system after applying organic amendments and to derive metrics of the pore-network such as its fractal dimension, imaged macroporosity and critical pore diameter. X-Ray tomography indicated that composting and vermicomposting resulted in more complex and diverse porous system and increased soil macroporosity. The increased fractal dimensions also indicated that compost and vermicompost can contribute to structure formation and stabilization within a short time after their application. Despite the small application rate and short incubation time, the application of organic amendments to the two different soil types resulted in improved soil water holding capacity and water use efficiency. Composting and vermicomposting appeared to have the best effect at reducing the irrigation demand and evaporation losses and increasing the water use efficiency of the plant, likely through their effect on soil structure and the pore-size distribution.

Til dokument

Sammendrag

Phototrophic microalgae use light to produce biomass and high-value compounds, such as pigments and polyunsaturated fatty acids (PUFA), for food and feed. These biomolecules can be induced by flashing light during the final growth stage. We tested different exposure times (1–6 days) of flashing light (f = 0.5, 5, 50 Hz; duty cycle = 0.05) on biomass, pigment and fatty acid productivity in Diacronema lutheri and Tetraselmis striata. A three-day exposure to low-frequency (5 Hz) flashing light successfully increased the production of fucoxanthin, diatoxanthin, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in D. lutheri up to 4.6-fold and of lutein, zeaxanthin and EPA in T. striata up to 1.3-fold compared to that of continuous light. Biomass productivity declined 2-fold for D. lutheri and remained similar for T. striata compared to that of continuous light. Thus, short-term treatments of flashing light may be promising for industrial algal production to increase biomass value.

Sammendrag

The worldwide decline in bees and other pollinating insects is a threat to biodiversity and food security, and urgent action must be taken to stop and then reverse this decline. An established cause of the insect decline is the use of harmful pesticides in agriculture. This case study focuses on the use of pesticides in Norwegian apple production and considers who among farmers, consumers and public authorities is most responsible for protecting bees against harmful pesticides. The extent to which these three different groups consider themselves responsible and the degree to which they are trusted by each of the other groups are also studied. This empirical study involves both qualitative interviews with Norwegian apple farmers, consumers and public authorities and survey data from consumers and farmers. The results show that consumers consider public authorities and farmers equally responsible for protecting bees, while farmers are inclined to consider themselves more responsible. Farmers, consumers and public authorities do not consider consumers significantly responsible for protecting bees, and consumers have a high level of trust in both farmers and public authorities regarding this matter. This study also finds that a low level of consumer trust in farmers or public authorities increases consumers’ propensity to purchase organic food, suggesting that those who do not trust that enough action is adopted to protect the environment take on more individual responsibility. This paper adds to the existing literature concerning the allocation of responsibility for environmental outcomes, with empirical evidence focusing specifically on pesticides and bees.

Til dokument

Sammendrag

The rapid conversion of tropical rainforests into monoculture plantations of rubber (Hevea brasiliensis) in Southeast Asia (SEA) necessitates understanding of rubber tree physiology under local climatic conditions. Frequent fog immersion in the montane regions of SEA may affect the water and carbon budgets of the rubber trees and the plantation ecosystems. We studied the effect of fog on various plant physiological parameters in a mature rubber plantation in southwest China over 3 years. During the study period, an average of 141 fog events occurred every year, and the majority occurred during the dry season, when the temperature was relatively low. In addition to the low temperature, fog events were also associated with low vapor pressure deficit, atmospheric water potential, relative humidity and frequent wet-canopy conditions. We divided the dry season into cool dry (November-February) and hot dry (March-April) seasons and classified days into foggy (FG) and non-foggy (non-FG) days. During the FG days of the cool dry season, the physiological activities of the rubber trees were suppressed where carbon assimilation and evapotranspiration showed reductions of 4% and 15%, respectively, compared to the cool dry non-FG days. Importantly, the unequal declines in carbon assimilation and evapotranspiration led to enhanced crop water productivity (WPc) on cool dry FG days but insignificant WPc values were found between FG and non-FG days of the hot dry season. Our results suggest that, by regulating plant physiology, fog events during the cool dry season significantly reduce water demand and alleviate water stress for the trees through improved WPc.

Til dokument

Sammendrag

The morphogenetic changes of the bud meristem during floral initiation in gooseberry were examined by scanning electron microscopy. Six floral stages, similar to those reported for black currants, were identified. We also studied the environmental control of shoot growth and floral initiation of cvs. Mucurines, Pax and Xenia in two experiments in daylight phytotron compartments at 12, 18 and 24°C. Under natural daylength conditions at Ås, Norway (69°40’N), shoot growth started to decline by mid-August and ceased in early September. Cessation of growth was associated with floral initiation at 18 and 12°C, while at 24°C, only ‘Mucurines’ initiated floral primordia. Floral Stage 2 was reached by 3 September in ‘Mucurines’ and ‘Xenia’ at 18 and 12°C and nearly 2 weeks later in ‘Pax’. In a second experiment with controlled photoperiods, all cultivars ceased growing and initiated flowering in 10-h SD within 2–3 weeks, while in 20-h LD, growth continued for 8 weeks without floral initiation. Under 10-h SD conditions, all cultivars initiated flowers also at 24°C. Flowering performance in the following spring verified these results. We conclude that gooseberry is an obligatory SD plant with a critical photoperiod of 15–16 h.

Til dokument

Sammendrag

The success of Phasmarhabditis hermaphrodita (Schneider) Andrássy (Rhabditida: Rhabditidae) as a biological control agent of molluscs has led to a worldwide interest in phasmarhabditids. However, scant information is available on the lifecycle development of species within the genus. In the current study, the development of P. hermaphrodita, Phasmarhabditis papillosa, Phasmarhabditis bohemica and Phasmarhabditis kenyaensis were studied using ex vivo cultures, in order to improve our understanding of their biology. Infective juveniles (IJs) of each species were added to 1 g of defrosted homogenized slug cadavers of Deroceras invadens and the development monitored after inoculated IJ recovery, over a period of eight–ten days. The results demonstrated that P. bohemica had the shortest development cycle and that it was able to produce first-generation IJs after eight days, while P. hermaphrodita, P. papillosa and P. kenyaensis took ten days to form a new cohort of IJs. However, from the perspective of mass rearing, P. hermaphrodita has an advantage over the other species in that it is capable of forming self-fertilizing hermaphrodites, whereas both males and females are required for the reproduction of P. papillosa, P. bohemica and P. kenyaensis. The results of the study contribute to the knowledge of the biology of the genus and will help to establish the in vitro liquid cultures of different species of the genus.

Til dokument

Sammendrag

The Faro Convention underlined the importance of educational initiatives related to heritage. This paper focuses on the educational dimension of landscape, as a means to better facilitate its social acceptance and hence its inclusion in planning and management processes. The relation between landscape education and social perception, through a few European examples will be analysed to ascertain whether the principles of the Convention are being complied with effectively. The authors introduce four case studies of heritage-related education carried out in three European countries (Spain, Norway and Italy). These case studies provide the possibility to coherently analyse a wide range of activities and initiatives occurring at various scales and levels: geographic, local and sectoral. In addition, they describe the pedagogical potential of cultural landscapes and cultural heritage, and highlight some of the educational strategies and measures currently used in this field.

Til dokument

Sammendrag

The major event that hit Europe in summer 2021 reminds society that floods are recurrent and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) efforts preferring sole technical measures to prevent and mitigate floods have shown to be not sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent paradigm shift of FRM towards solutions that use nature-derived features, processes and management options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of NBS across various settings remains fragmented and their implementation faces a series of institutional barriers. In this paper, we adopt a community expert perspective drawing upon LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on the results, we define avenues for further research, connecting hydrology and soil science, on the one hand, and land use planning, social geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in the research of NBS in FRM.

Til dokument

Sammendrag

The role of soil moisture for organic matter decomposition rates remains poorly understood and underrepresented in Earth System Models (ESMs). We apply the Dual Arrhenius Michaelis-Menten (DAMM) model to a selection of ESM soil temperature and moisture outputs to investigate their effects on decomposition rates, at different soil depths, for a historical period and a future climate period. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates (up to ± 20%), compared to a temperature-only approach. In the top soil, the majority of these changes is driven by substrate availability. In deeper soil layers, oxygen availability plays a relatively stronger role. Owing to these different moisture controls along the soil depth, our study highlights the need for depth-resolved inclusion of soil moisture effects on decomposition rates within ESMs. This is particularly important for C-rich soils in regions which may be subject to strong future warming and vertically opposing moisture changes, such as the peat soils at northern high latitudes.

Til dokument

Sammendrag

1. Climate change is increasing the severity and frequency of droughts around the globe, leading to tree mortality that reduces production and provision of other ecosystem services. Recent studies show that growth of mixed stands may be more resilient to drought than pure stands. The two most economically important and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.), but little is known about their susceptibility to drought when coexist. 2. This paper analyses the resilience (resistance, recovery rate and recovery time) at individual-tree level using a network of tree-ring collections from 22 sites along a climatic gradient from central Europe to Scandinavia. We aimed to identify differences in growth following drought between the two species and between mixed and pure stands, and how environmental variables (climate, topography and site location) and tree characteristics influence them. 3. We found that both the timing and duration of drought drive the different responses between species and compositions. Norway spruce showed higher vulnerability to summer drought, with both lower resistance and a longer recovery time than Scots pine. Mixtures provided higher drought resistance for both species compared to pure stands, but the benefit decreases with the duration of the drought. Especially climate sensitive and old trees in climatically marginal sites were more affected by drought stress. 4. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for adapting European forests to climate change. However, if future droughts become longer, the advantage of mixed stands could disappear which would be especially negative for Norway spruce.

Til dokument

Sammendrag

1. The persistence of perennial herbaceous species is threatened by increasing aridity. However, summer dormancy is a strategy conferring superior survival to grasses adapted to hot and dry summers. The role of temperature on the induction of summer dormancy was investigated in the perennial grass Dactylis glomerata to analyse the potential expression of this strategy under warmer climates. 2. We tested seven populations of D. glomerata originating from Morocco to Norway across the same latitudinal gradient in a five-site experiment. One population of the highly summer-dormant grass Poa bulbosa was used as a reference. Plants were grown from autumn in pots under full irrigation for 1 year mostly under open-air shelters. Heading date (ear emergence preceding flowering) was recorded and foliage senescence was assessed from end of spring until autumn. The maximum plant senescence under summer irrigation indicated the level of dormancy expression. Summer dormancy onset, release, expression and duration were modelled as a function of climatic variables. 3. From north to south, the duration of summer dormancy of the Mediterranean populations of D. glomerata and P. bulbosa ranged from 0 to 122 days, and 79 to 200 days, respectively. P. bulbosa was always completely dormant, while dormancy expression of D. glomerata was positively correlated with the sum of temperatures from winter onset (R2 = 0.57) and with the mean of minimum temperatures in summer (R2 = 0.73). Dormancy onset, release and duration were also positively correlated with thermal time from winter onset, while the duration of summer dormancy was longer as maximum temperatures increased. Mapping the European regions with climates allowing the expression of summer dormancy in D. glomerata showed that the potentially inductive areas for this strategy may expand in parallel with increasing summer aridity under a future climate warming scenario. 4. Synthesis. The large phenotypic variability of the expression of summer dormancy in D. glomerata was driven by temperature, suggesting that this strategy may have a greater role in higher latitudes to increase plant survival over the predicted hotter and drier summers. Leveraging this strategy for the choice and selection of suitable populations could enhance future adaptation of major perennial grasses to climate change.

Til dokument

Sammendrag

Aims To investigate and compare antimicrobial resistance genes (ARGs) in faeces from cohabiting dogs and owners. Methods and Results DNA from faecal samples from 35 dogs and 35 owners was screened for the presence of 34 clinically relevant ARGs using high throughput qPCR. In total, 24 and 25 different ARGs were present in the dog and owner groups, respectively. The households had a mean of 9.9 ARGs present, with dogs and owners sharing on average 3.3 ARGs. ARGs were shared significantly more in households with dogs over 6 years old (3.5, interquartile range 2.75–5.0) than in households with younger dogs (2.5, interquartile range 2.0–3.0) (p = 0.02). Dogs possessed significantly more mecA and aminoglycoside resistance genes than owners. Conclusions Dogs and owners can act as reservoirs for a broad range of ARGs belonging to several antimicrobial resistance classes. A modest proportion of the same resistance genes were present in both dogs and owners simultaneously, indicating that ARG transmission between the dog and human gut is of minor concern in the absence of antimicrobial selection. Significance and Impact of the Study This study provides insight into the common dog and human gut resistomes, contributing to an improved knowledge base in risk assessments regarding ARG transmission between dogs and humans.

Sammendrag

Urban agriculture is increasingly recognized as an important sustainable pathway for climate change adaptation and mitigation, for building more resilient cities, and for citizens’ health. Urban agriculture systems appear in many forms – both commercial and non-commercial. The value of the services derived from urban agriculture, e.g., enhanced food security, air quality, water regulation, and high level of biodiversity, is often difficult to quantify to inform policymakers and the general public in their decision making. We perform a contingent valuation survey of four different types of urban agriculture Where the citizens of Oslo are asked about their attitudes and willingness to pay non-commercial (urban community gardens and urban gardens for work training, education and kindergartens) and for commercial (i.e. aquaponics and vertical production) forms of urban agriculture. Results show that the citizens of Oslo are willing to increase their tax payments to contribute to further development of urban farming in Oslo.

Til dokument

Sammendrag

Milder winters and extended wetter periods in spring and autumn limit the amount of time available for carrying out ground-based forest operations on soils with satisfactory bearing capacity. Thus, damage to soil in form of compaction and displacement is reported to be becoming more widespread. The prediction of trafficability has become one of the most central issues in planning of mechanized harvesting operations. The work presented looks at methods to model field measured spatio-temporal variations of soil moisture content (SMC, [%vol]) – a crucial factor for soil strength and thus trafficability. We incorporated large-scaled maps of soil characteristics, high-resolution topographic information – depth-to-water (DTW) and topographic wetness index – and openly available temporal soil moisture retrievals provided by the NASA Soil Moisture Active Passive mission. Time-series measurements of SMC were captured at six study sites across Europe. These data were then used to develop linear models, a generalized additive model, and the machine learning algorithms Random Forest (RF) and eXtreme Gradient Boosting (XGB). The models were trained on a randomly selected 10% subset of the dataset. Predictions of SMC made with RF and XGB attained the highest R2 values of 0.49 and 0.51, respectively, calculated on the remaining 90% test set. This corresponds to a major increase in predictive performance, compared to basic DTW maps (R2 = 0.022). Accordingly, the quality for predicting wet soils was increased by 49% when XGB was applied (Matthews correlation coefficient = 0.45). We demonstrated how open access data can be used to clearly improve the prediction of SMC and enable adequate trafficability mappings with high spatial and temporal resolution. Spatio-temporal modelling could contribute to sustainable forest management.

Til dokument

Sammendrag

Aquaculture industry is one of the major food-producing sectors in the world that provide nutritional food security for mankind. Fish and crustacean farmers are facing various challenges in treating the rapid spread of infectious diseases in recent times. Numerous strategies, including antibiotics, disinfectants, and other antimicrobial agents, have been applied to protect the cultivable aquatic animals from infectious diseases. These applications lead to the development of antimicrobial resistance, toxicity, and the accumulation of antibiotic residues in cells and organelles of the cultivable edible organisms and the environment. The use of naturally derived compounds, polysaccharides, and functional metabolites has gained immense attention among aquaculturists. Mushrooms and their nutraceutical components have been widely used in various sectors, including food, pharmaceutical, poultry, and aquaculture industries, for their non-toxic and eco-friendly properties. To date, there are several reports available on edible and medicinal mushrooms as a dietary ingredient for fish and decapod crustacean culture. The mushroom products such as mycelia, stalk, dry powder, polysaccharides, and extracts have been utilized in aquaculture as growth promoters and immunostimulants, improving the digestive enzyme activity, antimicrobials, and improving the health status of cultivable aquatic animals. This present review elucidates the effectiveness of mushrooms and mushroom-derived compounds as prebiotics in aquaculture. The challenges and future perspectives of mushroom-derived bioactive molecules have been discussed in this review.

Til dokument

Sammendrag

Purpose of Review Mechanized logging operations with ground-based equipment commonly represent European production forestry but are well-known to potentially cause soil impacts through various forms of soil disturbances, especially on wet soils with low bearing capacity. In times of changing climate, with shorter periods of frozen soils, heavy rain fall events in spring and autumn and frequent needs for salvage logging, forestry stakeholders face increasingly unfavourable conditions to conduct low-impact operations. Thus, more than ever, planning tools such as trafficability maps are required to ensure efficient forest operations at reduced environmental impact. This paper aims to describe the status quo of existence and implementation of such tools applied in forest operations across Europe. In addition, focus is given to the availability and accessibility of data relevant for such predictions. Recent Findings A commonly identified method to support the planning and execution of machine-based operations is given by the prediction of areas with low bearing capacity due to wet soil conditions. Both the topographic wetness index (TWI) and the depth-to-water algorithm (DTW) are used to identify wet areas and to produce trafficability maps, based on spatial information. Summary The required input data is commonly available among governmental institutions and in some countries already further processed to have topography-derived trafficability maps and respective enabling technologies at hand. Particularly the Nordic countries are ahead within this process and currently pave the way to further transfer static trafficability maps into dynamic ones, including additional site-specific information received from detailed forest inventories. Yet, it is hoped that a broader adoption of these information by forest managers throughout Europe will take place to enhance sustainable forest operations.

Til dokument

Sammendrag

European beech (Fagus sylvatica L.) forests provide multiple essential ecosystem goods and services. The projected climatic conditions for the current century will significantly affect the vitality of European beech. The expected impact of climate change on forest ecosystems will be potentially stronger in southeast Europe than on the rest of the continent. Therefore, our aim was to use the long-term monitoring data of crown vitality indicators in Croatia to identify long-term trends, and to investigate the influence of current and previous year climate conditions and available site factors using defoliation (DEF) and defoliation change (DDEF) as response variables. The results reveal an increasing trend of DEF during the study period from 1996 to 2017. In contrast, no significant trend in annual DDEF was observed. The applied linear mixed effects models indicate a very strong influence of previous year drought on DDEF, while climate conditions have a weak or insignificant effect on DEF. The results suggest that site factors explain 25 to 30% DEF variance, while similar values of conditional and marginal R2 show a uniform influence of drought on DDEF. These results suggest that DEF represents the accumulated impact of location-specific stressful environmental conditions on tree vitality, while DDEF reflects intense stress and represents the current or recent status of tree vitality that could be more appropriate for analysing the effect of climate conditions on forest trees.

Til dokument

Sammendrag

Compatibility and synchrony between specialized tissues of the pistil, female gametophytes and male gametophytes, are necessary for successful pollination, fertilization, and fruit set in angiosperms. The aim of the present work was to study the development and viability of embryo sacs, as well as fertilization success, in relation to the fruit set of the cultivars ‘Mallard’, ‘Edda’, ‘Jubileum’, and ‘Reeves’, under specific Norwegian climatic conditions. Emasculated, unpollinated, and open-pollinated flowers were collected at the beginning of flowering, and on the 3rd, 6th, 9th, and 12th days after flowering, from all four plum cultivars over two years (2018/2019). Ovaries were dehydrated, embedded in paraffin wax, sectioned, stained, and observed under a light microscope. Results showed the existence of synchronization between successive phases in the development of the embryo sac and individual phases of flowering. All plum cultivars had higher percentages of viable embryo sacs, fertilized embryo sacs, and fruit set in 2018 than in 2019. These differences may be related to the very low temperatures during the post-full-flowering period in 2019, and to the low adaptation of some studied cultivars to unfavorable conditions. In our study, the cultivar ‘Jubileum’ showed the highest percentage of viable embryo sacs, fertilized embryo sacs, and fruit set compared to other cultivars, i.e., the best low-temperature adaptation.

Til dokument

Sammendrag

Fusarium graminearum is regarded as the main deoxynivalenol (DON) producer in Norwegian oats, and high levels of DON are occasionally recorded in oat grains. Weather conditions in the period around flowering are reported to have a high impact on the development of Fusarium head blight (FHB) and DON in cereal grains. Thus, it would be advantageous if the risk of DON contamination of oat grains could be predicted based on weather data. We conducted a functional data analysis of weather-based time series data linked to DON content in order to identify weather patterns associated with increased DON levels. Since flowering date was not recorded in our dataset, a mathematical model was developed to predict phenological growth stages in Norwegian spring oats. Through functional data analysis, weather patterns associated with DON content in the harvested grain were revealed mainly from about three weeks pre-flowering onwards. Oat fields with elevated DON levels generally had warmer weather around sowing, and lower temperatures and higher relative humidity or rain prior to flowering onwards, compared to fields with low DON levels. Our results are in line with results from similar studies presented for FHB epidemics in wheat. Functional data analysis was found to be a useful tool to reveal weather patterns of importance for DON development in oats.

Til dokument

Sammendrag

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) was recorded for the first time in 2016 attacking maize fields in central and west Africa. Soon after, several other regions and countries have reported the pest in almost the entire sub-Saharan Africa. In the present study, we assumed that (i) a variety of alternative plant species host FAW, especially during maize off-season, (ii) a wide range of local parasitoids have adapted to FAW and (iii) parasitoid species composition and abundance vary across seasons. During a two-year survey (from June 2018 to January 2020), parasitoids and alternative host plants were identified from maize and vegetable production sites, along streams and lowlands, on garbage dumps and old maize fields in southern and partly in the central part of Benin during both maize growing- and off-season. A total of eleven new host plant species were reported for the first time, including Cymbopogon citratus (de Candolle) Stapf (cultivated lemon grass), Bulbostylis coleotricha (A. Richard) Clarke and Pennisetum macrourum von Trinius (wild). The survey revealed seven parasitoid species belonging to four families, namely Platygastridae, Braconidae, Ichneumonidae, and Tachinidae associated with FAW on maize and alternative host plants. The most abundant parasitoid species across seasons was the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). These findings demonstrate FAW capability to be active during the maize off-season in the selected agro-ecologies and provide baseline information for classical and augmentative biocontrol efforts.

Til dokument

Sammendrag

The application of numerical models to understand the behavioural pattern of a flood is widely found in the literature. However, the selection of an appropriate hydraulic model is highly essential to conduct reliable predictions. Predicting flood discharges and inundation extents are the two most important outcomes of flood simulations to stakeholders. Precise topographical data and channel geometries along a suitable hydraulic model are required to accurately predict floods. One-dimensional (1D) hydraulic models are now replaced by two-dimensional (2D) or combined 1D/2D models for higher performances. The Hydraulic Engineering Centre’s River Analysis System (HEC-RAS) has been widely used in all three forms for predicting flood characteristics. However, comparison studies among the 1D, 2D to 1D/2D models are limited in the literature to identify the better/best approach. Therefore, this research was carried out to identify the better approach using an example case study of the Kelani River basin in Sri Lanka. Two flood events (in 2016 and 2018) were separately simulated and tested for their accuracy using observed inundations and satellite-based inundations. It was found that the combined 1D/2D HEC-RAS hydraulic model outperforms other models for the prediction of flows and inundation for both flood events. Therefore, the combined model can be concluded as the better hydraulic model to predict flood characteristics of the Kelani River basin in Sri Lanka. With more flood studies, the conclusions can be more generalized.

Til dokument

Sammendrag

Climate change is a serious and complex crisis that impacts humankind in different ways. It affects the availability of water resources, especially in the tropical regions of South Asia to a greater extent. However, the impact of climate change on water resources in Sri Lanka has been the least explored. Noteworthy, this is the first study in Sri Lanka that attempts to evaluate the impact of climate change in streamflow in a watershed located in the southern coastal belt of the island. The objective of this paper is to evaluate the climate change impact on streamflow of the Upper Nilwala River Basin (UNRB), Sri Lanka. In this study, the bias-corrected rainfall data from three Regional Climate Models (RCMs) under two Representative Concentration Pathways (RCPs): RCP4.5 and RCP8.5 were fed into the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model to obtain future streamflow. Bias correction of future rainfall data in the Nilwala River Basin (NRB) was conducted using the Linear Scaling Method (LSM). Future precipitation was projected under three timelines: 2020s (2021–2047), 2050s (2048–2073), and 2080s (2074–2099) and was compared against the baseline period from 1980 to 2020. The ensemble mean annual precipitation in the NRB is expected to rise by 3.63%, 16.49%, and 12.82% under the RCP 4.5 emission scenario during the 2020s, 2050s, and 2080s, and 4.26%, 8.94%, and 18.04% under RCP 8.5 emission scenario during 2020s, 2050s and 2080s, respectively. The future annual streamflow of the UNRB is projected to increase by 59.30% and 65.79% under the ensemble RCP4.5 and RCP8.5 climate scenarios, respectively, when compared to the baseline scenario. In addition, the seasonal flows are also expected to increase for both RCPs for all seasons with an exception during the southwest monsoon season in the 2015–2042 period under the RCP4.5 emission scenario. In general, the results of the present study demonstrate that climate and streamflow of the NRB are expected to experience changes when compared to current climatic conditions. The results of the present study will be of major importance for river basin planners and government agencies to develop sustainable water management strategies and adaptation options to offset the negative impacts of future changes in climate.

Til dokument

Sammendrag

After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS).

Sammendrag

The populations of European ash and its harmless fungal associate Hymenoscyphus albidus are in decline owing to ash dieback caused by the invasive Hymenoscyphus fraxineus, a fungus that in its native range in Asia is a harmless leaf endophyte of local ash species. To clarify the behavior of H. albidus and its spatial and temporal niche overlap with the invasive relative, we used light microscopy, fungal species-specific qPCR assays, and PacBio long-read amplicon sequencing of the ITS1-5.8S-ITS2 region to examine fungal growth and species composition in attached leaves of European ash. The plant material was collected from a healthy stand in central Norway, where ash saplings in late autumn showed leaflet vein necrosis like that commonly related to H. fraxineus. For reference, leaflet samples were analyzed from stands with epidemic level of ash dieback in southeastern Norway and Estonia. While H. albidus was predominant in the necrotic veins in the healthy stand, H. fraxineus was predominant in the diseased stands. Otherwise, endophytes with pathogenic potential in the genera Venturia (anamorph Fusicladium), Mycosphaerella (anamorph Ramularia), and Phoma, and basidiomycetous yeasts formed the core leaflet mycobiome both in the healthy and diseased stands. In necrotic leaf areas with high levels of either H. albidus or H. fraxineus DNA, one common feature was the high colonization of sclerenchyma and phloem, a region from which the ascomata of both species arise. Our data suggest that H. albidus can induce necrosis in ash leaves, but that owing to low infection pressure, this first takes place in tissues weakened by autumn senescence, 1–2 months later in the season than what is characteristic of H. fraxineus at an epidemic phase of ash dieback. The most striking difference between these fungi would appear to be the high fecundity of H. fraxineus. The adaptation to a host that is phylogenetically closely related to European ash, a tree species with high occurrence frequency in Europe, and the presence of environmental conditions favorable to H. fraxineus life cycle completion in most years may enable the build-up of high infection pressure and challenge of leaf defense prior to autumn senescence.

Sammendrag

Management of Scots pine (Pinus sylvestris L.) in Norway requires a forest growth and yield model suitable for describing stand dynamics of even-aged forests under contemporary climatic conditions with and without the effects of silvicultural thinning. A system of equations forming such a stand-level growth and yield model fitted to long-term experimental data is presented here. The growth and yield model consists of component equations for (i) dominant height, (ii) stem density (number of stems per hectare), (iii) total basal area, (iv) and total stem volume fitted simultaneously using seemingly unrelated regression. The component equations for stem density, basal area, and volume include a thinning modifier to forecast stand dynamics in thinned stands. It was shown that thinning significantly increased basal area and volume growth while reducing competition related mortality. No significant effect of thinning was found on dominant height. Model examination by means of various fit statistics indicated no obvious bias and improvement in prediction accuracy in comparison to existing models in general. An application of the developed stand-level model comparing different management scenarios exhibited plausible long-term behavior and we propose this is therefore suitable for national deployment.

Til dokument

Sammendrag

The plant pomological characteristics and physiological behaviors of genotypes in modern apple cultivation could be different depending on the use of rootstock, changing growth ecology and application of biological control agents. The aim of this research was to determine the effects of rhizobacteria application on leaf and fruit nutrient contents in different apple scion–rootstock combinations. This study was carried out with seven standard cultivars (Scarlet Spur, Red Chief, Fuji, Jeromine, Galaxy Gala, Granny Smith, and Golden Reinders) budded on M.9 and MM.106 rootstocks. In the experiment, trees were sprayed by a nitrogen + phosphorus solvent rhizobacteria three times, with an interval of 15 days in the spring period. The effect of rhizobacteria application on leaf and fruit nutrient contents was statistically significant and provided generally significant positive contributions, except for leaf Mg content. Comparing both rootstocks, the positive effect of bacterial application was higher on the M.9 rootstock for leaf N and B content and fruit N and Fe content, and on the MM.106 rootstock for other nutrient content. While the effects of bacterial application on the basis of cultivars were generally positive, the highest positive contribution was made in leaf P content (10.7%) and fruit Mn content (32.1%) of the Fuji cultivar. Considering the total increase in nutrients in scion–rootstocks combination, rhizobacteria application had a positive effect on the leaf nutrient contents in Golden Reinders/MM.106, but not leaf K content. The highest increases in leaves of scion-rootstock combinations were determined as 4.0% in N content in Granny Smith/M.9, 14.1% in P content in Scarlet Spur/MM.106, 7.1% in K content in Fuji/MM.106, 4.4% in Ca content in Jeromine/M.9, and 14.0% in Mg content in Granny Smith/MM.106. The highest increase in fruit nutrient contents was between 4.9% (N content) and 13.5% (Ca content) for macro elements, and between 9.5% (Cu content) and 41.8% (Mn content) for microelements. The results of the present study may provide significant leads for further studies on this subject.

Til dokument

Sammendrag

This study evaluated the effective pollination period (EPP) in four European plum (Prunus domestica L.) cultivars (‘Mallard’, ‘Edda’, ‘Jubileum’, and ‘Reeves’) during two years (2018–2019) under the environmental conditions in western Norway. The pollination of plum cultivars was carried out one, three, five, seven, and nine days after anthesis (DAA) with a pollen mix of two compatible cultivars (‘Victoria’ and ‘Opal’). Initial, middle-season, and final fruit set was recorded after one month and two months after pollination and just before the harvest, respectively. On average from both years cultivar ‘Jubileum’ had the highest fruit set when pollinated one, three, five, seven, and nine DAA (33.23%, 30.83%, 8.47%, 3.08%, and 1.15%, respectively), which was more than two folds higher fruit set than in the other studied cultivars. Cultivar ‘Jubileum’ showed significantly reduced fruit set between pollination on five and nine DAA, while cultivars ‘Mallard’, ‘Edda’, and ‘Reeves’ had markedly reduced fruit set if pollinated three to five DAA, implying that the EPP in ‘Jubileum’ was five days while in the rest it was three days. Variation of weather conditions during the flowering period in both years did not have a major effect on the receptivity of stigmas in the studied plum cultivars, which means that the existing differences in the length of EPP is maternal-genotype dependent.

Til dokument

Sammendrag

Using modern analytical techniques, a comprehensive study of the chemical composition of fruits from apple cultivars grown in Western Norway during 2019 and 2020 was done. Metals, sugars, organic acids, antioxidant tests, and polyphenol content have been observed. In all investigated samples, the most dominant sugars were glucose, fructose, and sucrose. Among 11 tested organic acids, the dominant was malic acid, followed by citric and maleic acid. The most common metal was potassium, followed by magnesium and zinc. The quantification of polyphenols showed that among the 11 quantified polyphenols, chlorogenic acid, quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin, and phlorizin were the most abundant. A detailed study of the polyphenolic profile of nine investigated apple samples provided 30 identified polyphenolic compounds from the class of hydroxybenzoic and hydroxycinnamic acids, flavonoids, and dihydrochalcones. In addition to the identified 3-O-caffeoylquinic acid, its two isomers of 5-O-caffeoylquinic acid and three esters were also found. Present polyphenols of the tested apples provided significant data on the quality of Norwegian apples, and they contribute to the distinguishing of these apple samples.

Til dokument

Sammendrag

Atrazine is a widely used triazine herbicide, which poses a serious threat to human health and aquatic ecosystem. A montmorillonite–biochar composite (MMT/BC) was prepared for atrazine remediation. Biochar samples were characterized by using scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). Structural and morphological analysis of raw biochar (BC) and MMT/BC showed that MMT particles have been successfully coated on the surface of biochar. Sorption experiments in aqueous solution indicated that the MMT/BC has higher removal capacity of atrazine compared to BC (about 3.2 times). The sorption of atrazine on the MMT/BC was primarily controlled by both physisorption and chemisorption mechanisms. The amendment of MMT/BC increased the sorption capacity of soils and delayed the degradation of atrazine. Findings from this work indicate that the MMT/BC composite can effectively improve the sorption capacity of atrazine in aquatic environment and farmland soil and reduce the environmental risk.

Til dokument

Sammendrag

Tomato greenhouses at high latitudes (≥58°North) require supplemental light to enable high yields and year-round production. Supplemental light systems can differ in lamp type, high-pressure sodium (HPS) or light emitting diode (LED), and also vary in lamp capacity. Based on a combined greenhouse climate, tomato yield, and greenhouse economics model, a methodology was developed, for determining the optimal supplemental light system, dependent on local climate and economic conditions. Two optimisation objectives were considered separately, maximal energy use efficiency (EUE) and maximal net financial result (NFR). The developed methodology was applied to four different greenhouse locations in Norway. At each location, both optimisation objectives were reached with LEDs. The optimal lamp capacities range from 256 to 341 μmol m−2 s−1 (maximal EUE) and 302–323 μmol m−2 s−1 (maximal NFR). The economically optimal lamp capacity is little sensitive to climate conditions. At the lamp type respective NFR maxima, LEDs resulted, on average, in 10% higher tomato yield, 102.2 NOK m−2 year−1 higher NFR, and 35% higher EUE. Consequently, switching from HPS lamps to LEDs enables increasing productivity, energy efficiency and profitability of greenhouse tomato production. Furthermore, the difference between EUE and NFR optima was, on average, 24% lower in terms of EUE and 56% lower in terms of NFR, when using LEDs instead of HPS lamps. On farm-scale, the proposed methodology can be used as decision-support-tool for selecting an efficient and profitable supplemental light system for greenhouse tomato production, dependent on local climate and economic conditions.

Til dokument

Sammendrag

Validation of models for plant disease management is a crucial part in the development of decision support systems in plant protection. Bespoke field trials are usually conducted to determine the performance of a model under practical conditions. However, field trials are very resource-demanding, and the use of already existing field trial data could significantly reduce costs for model validation. In this study, we took this novel approach to verify the performance of models for determining the need of fungicide applications against leaf blotch diseases in wheat by utilising historical weather data and yield data available from fungicide efficacy field trials. Two models based on humidity factors were used in the study. To estimate how specific humidity settings in the two models affect the number of recommended fungicide treatments per season, historical weather data from a 5-year period from weather stations in Denmark, Sweden, Norway, Finland, and Lithuania was used. The model output shows major differences between seasons and regions, typically recommending between one and three treatments per season. To determine the prediction potential of the models, data on yield gains from either one or two fungicide applications in fungicide efficacy trials conducted in wheat over a 5-year period in the five countries was utilised. The yield responses from fungicide treatments in the efficacy trials varied considerably between years and countries, as did the proportion of predictions of profitable treatments. In general, there was a tendency for the models to overestimate the need to apply fungicides (low specificity), but they rarely failed to recommend an application that was needed (high sensitivity). Despite the importance of having specific trials across regions in order to adjust models to local cropping and weather conditions, our study shows that historical weather data and existing field trial data have the potential to be used in model validation.

Til dokument

Sammendrag

Just as the aboveground tree organs represent the interface between trees and the atmosphere, roots act as the interface between trees and the soil. In this function, roots take-up water and nutrients, facilitate interactions with soil microflora, anchor trees, and also contribute to the gross primary production of forests. However, in comparison to aboveground plant organs, the biomass of roots is much more difficult to study. In this study, we analyzed 19 European datasets on above- and belowground biomass of juvenile trees of 14 species to identify generalizable estimators of root biomass based on tree sapling dimensions (e.g. height, diameter, aboveground biomass). Such estimations are essential growth and sequestration modelling. In addition, the intention was to study the effect of sapling dimension and light availability on biomass allocation to roots. All aboveground variables were significant predictors for root biomass. But, among aboveground predictors of root biomass plant height performed poorest. When comparing conifer and broadleaf species, the latter tended to have a higher root biomass at a given dimension. Also, with increasing size, the share of belowground biomass tended to increase for the sapling dimensions considered. In most species, there was a trend of increasing relative belowground biomass with increasing light availability. Finally, the height to diameter ratio (H/D) was negatively correlated to relative belowground biomass. This indicates that trees with a high H/D are not only more unstable owing to the unfavorable bending stress resistance, but also because they are comparatively less well anchored in the ground. Thus, single tree stability may be improved through increasing light availability to increase the share of belowground biomass.

Til dokument

Sammendrag

Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsø, Bodø [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsø to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsø. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southern-most population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsø and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata.

Til dokument

Sammendrag

Soils form the skin of the Earth’s surface, regulating water and biogeochemical cycles and generating production of food, timber, and textiles around the world. Changes in soil and its ability to perform a range of processes have important implications for Earth system function, especially in the critical zone (CZ)—the area that extends from the top of the canopy to the bottom of groundwater and that harbors most of Earth’s biosphere. A key aspect of the way soil functions results from its structure, defined as the size, shape, and arrangement of soil particles and pores. The network of pores provides storage space for at least a quarter of Earth’s biodiversity, while the abundance, size and connectivity of the pore space regulates fluxes of heat, water, nutrients and gases that define the physical and chemical environment. Here we review the nature of soil structure, focusing on its co-evolution with the plants and microbes that live within the soil, and the degree to which these processes have been incorporated into flow and transport models. Though it is well known that soil structure can change with wetting and drying events, often oscillating seasonally, the dynamic nature of soil structure that we discuss is a systematic shift that results in changes in its hydro-bio-geochemical function over decades to centuries, timescales over which major changes in carbon and nutrient cycles have been observed in the Anthropocene. We argue that the variable nature of soil structure, and its dynamics, need to be better understood and captured by land surface and ecosystem models, which currently describe soil structure as static. We further argue that modelers and empiricists both are well-poised to quantify and incorporate these dynamics into their studies. From these efforts, four fundamental questions emerge: 1) How do rates of soil aggregate formation and collapse, and their overall arrangements, interact in the Anthropocene to regulate CZ functioning from soil particle to continental scales? 2) How do alterations in rooting-depth distributions in the Anthropocene influence pore structure to control hydrological partitioning, biogeochemical transformations and fluxes, exchanges of energy and carbon with the atmosphere and climate, regolith weathering, and thus regulation of CZ functioning? 3) How does changing microbial functioning in a high CO2, warmer world with shifting precipitation patterns influence soil organic carbon dynamics and void-aggregate profile dynamics? 4) How deeply does human influence in the Anthropocene propagate into the subsurface, how does this depth relate to profile structure, and how does this alter the rate at which the CZ develops? The United Nations has recently recognized that 33% of the Earth's soils are already degraded and over 90% could become degraded by 2050. This recognition highlights the importance of addressing these proposed questions, which will promote a predictive understanding of soil structure.

Til dokument

Sammendrag

Sorption to cheap sorbents can be used to concentrate nutrients from liquid waste streams and make them into fertilisers. In this study we assess how plant available is ammonium nitrogen (N) sorbed to three sorbents, and if the potential for greenhouse gas (GHG) emissions after a non-growing season is affected by sorption. Ammonium-N labelled with N15 was sorbed to biochar, bentonite and zeolite. Treatments where N was sorbed and where N and sorbents were applied separately were tested in a pot experiment with wheat, and soil samples were then frozen and dried to simulate non-growing seasons. After thawing and re-wetting, GHG emissions from the soil were assessed. There was no difference between sorption treatments in biomass or N uptake or fertiliser N left in the soil, and little difference between sorption treatments in gas emissions after the non-growing seasons was seen. We conclude that ammonium applied sorbed to these sorbents is as plant available as ammonium applied the conventional way. GHG emissions at the beginning of the next season are also not affected by ammonium applied sorbed.

Til dokument

Sammendrag

Clopyralid is a systemic herbicide used in oilseed rape and other crops. It was found in Danish honey from 2016 in concentrations exceeding the maximum residue level (MRL) of 0.05 mg kg−1. About 50% of the Danish honey is based on nectar from winter oilseed rape. In 2019 and 2020, winter oilseed rape fields were sprayed with clopyralid just before the assigned spraying deadline. At flowering, nectar and pollen samples were collected and the content of clopyralid was measured. Honey and pollen samples were also collected from beehives next to ten conventional winter oilseed rape fields sprayed with clopyralid. Clopyralid was found in nectar and pollen from the experimental fields, and in honey and pollen from beehives next to the conventional fields. For most samples the content in nectar and honey exceeded the MRL. The concentrations found, may not pose any health risk for consumers, as the MRL is based on the original detection limit and not on toxicological tests. However, it can have a significant economical consequence for the beekeepers, who are not allowed to sell the honey if the concentration of clopyralid exceeds 0.1 mg kg−1. Reducing the acceptable applicable rate of clopyralid or implementing an earlier deadline for spraying of clopyralid may reduce the risk of contaminating bee food products. However, if it is not possible to obtain a satisfactory effect of clopyralid on the weed flora under these conditions, spraying with pesticides containing clopyralid should be restricted in winter oilseed rape. Determination of an MRL value based on toxicological tests might result in a higher value and make it acceptable selling the honey containing higher levels of clopyralid.

Til dokument

Sammendrag

Seed production is an important element of weed population dynamics, and weed persistence relies upon the soil seed bank. In 2017 and 2018, we studied the relationship between the aboveground dry biomass of common weed species and their seed production. Weeds were selected randomly in the fields, and we surrounded the plants with a porous net to collect shed seeds during the growth season. Just before crop harvest, weeds were harvested, the plants’ dry weights were measured, and the number of seeds retained on the weeds was counted. A linear relationship between the biomass and the number of seeds produced was estimated. This relationship was not affected by year for Avena spica-venti, Chenopodium album, Galium aparine, or Persicaria maculosa. Therefore, the data of the two seasons were pooled and analysed together. For Alopecurus myosuroides, Anagallis arvensis, Capsella bursa-pastoris, Geranium molle, Polygonum aviculare, Silene noctiflora, Sonchus arvensis, Veronica persica, and Viola arvensis, the relationship varied significantly between the years. In 2017, the growing season was cold and wet, and the slope of the regression lines was less steep than in the dry season in 2018 for most species. Capsella bursa-pastoris was the most prolific seed producer with the steepest slope.

Til dokument

Sammendrag

Microalgal biomass is widely studied for its possible application in food and human nutrition due to its multiple potential health benefits, and to address raising sustainability concerns. An interesting field whereby to further explore the application of microalgae is that of beer brewing, due to the capacity of some species to accumulate large amounts of starch under specific growth conditions. The marine species Tetraselmis chui is a well-known starch producer, and was selected in this study for the production of biomass to be explored as an active ingredient in beer brewing. Cultivation was performed under nitrogen deprivation in 250 L tubular photobioreactors, producing a biomass containing 50% starch. The properties of high-starch microalgal biomass in a traditional mashing process were then assessed to identify critical steps and challenges, test the efficiency of fermentable sugar release, and develop a protocol for small-scale brewing trials. Finally, T. chui was successfully integrated at a small scale into the brewing process as an active ingredient, producing microalgae-enriched beer containing up to 20% algal biomass. The addition of microalgae had a noticeable effect on the beer properties, resulting in a product with distinct sensory properties. Regulation of pH proved to be a key parameter in the process.

Til dokument

Sammendrag

Non-native forest tree species have been introduced in Europe since the 16th century, but only in the second half of the 20th century the significance of the seed source origin for their economic use was recognized, resulting in the establishment of numerous provenance trials at a national, regional, European and International level, as those led by IUFRO. Breeding programs have also been launched in the continent for the most economically important species. Aim of this work is the formulation of provenance recommendations for planting of five non-native tree species in Europe (Douglas fir, grand fir, Sitka spruce, lodgepole pine and black locust), based on the information obtained from twenty countries, in the frame of the EU FP-1403 NNEXT Cost Action. The survey revealed that official and non-official national recommendations, based on provenance research results, have been elaborated and followed at a different level and extend for the above five species, but only for Douglas fir recommendations exist in almost all the participating to the survey countries. The compilation of provenance recommendations across Europe for each species is presented in the current work. Besides the recommended introduced seed sources, European seed sources are also preferred for planting, due to ease of access and high availability of forest reproductive material. European breeding programs yielding genetic material of high productivity and quality constitute currently the seed source of choice for several species and countries. Consolidation of trial data obtained across countries will allow the joint analysis that is urgently needed to draw solid conclusions, and will facilitate the development of ‘Universal-Response-Functions’ for the species of interest, rendering possible the identification of the genetic material suitable for global change. New provenance trial series that will test seed sources from the entire climatic range of the species, established in sites falling within and outside the environmental envelopes of their natural ranges, are urgently needed to pinpoint and understand the species-specific climate constraints, as well as to correlate functional traits to the seed origin and the environmental conditions of the test sites, so that the selection of suitable forest reproductive material of non-native tree species in the face of climate change can be feasible.

Til dokument

Sammendrag

Using periodic measurements from permanent plots in non-thinned and thinned Norway spruce (Picea abies (L.) H. Karst.) stands in Norway, individual-tree growth models were developed to predict annual diameter increment, height increment, and height to crown base increment. Based on long-term data across a range of thinning regimes and stand conditions, alternative approaches for modeling response to treatment were assessed. Dynamic thinning response functions in the form of multiplicative modifiers that predict no effect at the time of thinning, a rapid increase followed by an early maximum before the effect gradually declines to zero could not be fitted to initially derived baseline models without thinning related predictors. However, alternative approaches were used and found to perform well. Specifically, indicator variables representing varying time periods after thinning were statistically significant and behaved in a robust manner as well as consistent with general expectations. In addition, they improved overall prediction accuracy when incorporated as fixed effects into the baseline models for diameter and height to crown base increment. Further, more simply, including exponentially decreasing multiplicative thinning response functions improved prediction accuracy for height increment and height to crown base increment. Irrespective of studied attribute and modelling approach, improvement in performance of these extended models was relatively limited when compared to the corresponding baseline models and more pronounced in trees from thinned stands. We conclude that the largely varying and often multi-year measurement intervals of the periodic data used in this study likely prevented the development of more sophisticated thinning response functions. However, based on the evaluation of the final models’ overall performance such complex response functions may not to be necessary to reliably predict individual tree growth after thinning for certain conditions or species, which should be further considered in future analyses of similar nature.

Til dokument

Sammendrag

Bilberry (Vaccinium myrtillus) is a commercially important wild berry species, which accumulates high amounts of polyphenols, particularly anthocyanins, in the skin and flesh. Whilst a number of studies have quantified these phytochemicals in intact ripe bilberry fruit, we extend the current knowledge by investigating the spatial distribution of anthocyanin-associated polyphenols in fruit tissue, and study their links with primary metabolism during ripening. To address this, we used LC-MS and mass spectrometry imaging to measure and map primary and secondary metabolites in fruit. Correlation analysis showed that five sugars displayed strong positive correlations with anthocyanin accumulation, whereas all amino acids were negatively correlated. The accumulation patterns of polyphenols correlated in fruit skin and flesh, but altered with development. Finally, spatial segmentation analysis revealed that the chemical signatures of ripening first appear at defined regions under the skin and rapidly expand to encompass the entire fruit at the eating-ripe stage.

Til dokument

Sammendrag

Legumes are important in sustainable agriculture and particularly so when they are intercropped with other species. In breeding programs, little attention is paid to their agronomic performance in species mixtures. In red clover, improved persistence is an important breeding goal. We identified traits associated with survival of red clover cultivated in pure stands (PS 3) or in mixtures with grasses (MS 3) and managed under a 3-cut system (two locations), as well as in pure stands in a 5-cut system (PS 5, one location). Survivors from replicate plots were collected and a new generation made from each plot. The new generations were characterized in a growth experiment with light or simulated shade, and in a freezing experiment. We show that the traits related to red clover persistence depend on both plant community composition and cutting frequency. MS 3 had more leaves with larger leaf blades and longer petioles during the vegetative stage, followed by earlier stem elongation, higher number of elongating stems, higher biomass (also when accounting for earlier stem elongation) and more leaves in the regrowth after cutting than PS 3. MS 3 also had better freezing tolerance. PS 5 was similar to MS 3 and different from PS 3 in the number of leaves, leaf blade size, petiole length and number of elongating stems. These results show that breeding and cultivar evaluation, which is currently almost exclusively considering performance in pure stands, may miss some variation which provides persistence of red clover in mixtures with grasses.

Til dokument

Sammendrag

In total, 154 wild raspberry samples were collected from 26 localities representing a large area in Norway (21 localities) and a narrowly defined region of the Giant Mountains in the northern parts of the Czech Republic (5 localities). The samples were characterized for genetic diversity and population differentiation as well as for their potential use in crop breeding. Choice of plant material was based on the biogeographical similarity between the Giant Mountains and relevant areas in Norway, where plant communities may have evolved in parallel since the ice ages. The overall level of genetic diversity ĥ = 0.786, I = 2.153 was high. Numerous rare alleles were found for raspberries originating especially from the East Giant Mountains populations Jeleni louky and Krakonosuv lom. The overall degree of population subdivision measured by Wright’s fixation index (FST) was of a moderate level of 0.28. The highest level 0.33 was found between populations in Northern Norway and 0.31 between populations in the Giant Mountains. The genetic structure was evaluated using Bayesian analyses as implemented using STRUCTURE software. According to the ΔK value, eight clusters (K8) were identified among all the analysed samples. The results of the analysis of molecular variance (AMOVA) indicated that 79.7% of the total variation could be attributed to differences among individuals within populations, 15.3% was credited to differences among populations within regions, and only 5.0% was attributed to differences among regions. We concluded based on the results that Czech and Norwegian raspberry (R. idaeus) populations growing in natural high altitude and northern ecosystems are important genetic resources and represent a valuable source of genes and unique allele compositions for in situ and ex situ conservation and future raspberry breeding programmes.

Til dokument

Sammendrag

The INTENSE project, supported by the EU Era-Net Facce Surplus, aimed at increasing crop production on marginal land, including those with contaminated soils. A field trial was set up at a former wood preservation site to phytomanage a Cu/PAH-contaminated sandy soil. The novelty was to assess the influence of five organic amendments differing in their composition and production process, i.e. solid fractions before and after biodigestion of pig manure, compost and compost pellets (produced from spent mushroom substrate, biogas digestate and straw), and greenwaste compost, on Cu availability, soil properties, nutrient supply, and plant growth. Organic amendments were incorporated into the soil at 2.3% and 5% soil w/w. Total soil Cu varied from 179 to 1520 mg kg−1, and 1 M NH4NO3-extractable soil Cu ranged from 4.7 to 104 mg kg−1 across the 25 plots. Spring barley (Hordeum vulgare cv. Ella) was cultivated in plots. Changes in physico-chemical soil properties, shoot DW yield, shoot ionome, and shoot Cu uptake depending on extractable soil Cu and the soil treatments are reported. Shoot Cu concentration varied from 45 ± 24 to 140 ± 193 mg kg DW−1 and generally increased with extractable soil Cu. Shoot DW yield, shoot Cu concentration, and shoot Cu uptake of barley plants did not significantly differ across the soil treatments in year 1. Based on soil and plant parameters, the effects of the compost and pig manure treatments were globally discriminated from those of the untreated, greenwaste compost and digested pig manure treatments. Compost and its pellets at the 5% addition rate promoted soil functions related to primary production, water purification, and soil fertility, and the soil quality index.

Til dokument

Sammendrag

Sustainable water resources management roots in monitoring data reliability and a full engagement of all institutions involved in the water sector. When competences and interests are overlapping, however, coordination may be difficult, thus hampering cooperative actions. This is the case of Santa Cruz Island (Galápagos, Ecuador). A comprehensive assessment on water quality data (physico-chemical parameters, major elements, trace elements and coliforms) collected since 1985 revealed the need of optimizing monitoring efforts to fill knowledge gaps and to better target decision-making processes. A Water Committee (Comité de la gestión del Agua) was established to foster the coordinated action among stakeholders and to pave the way for joint monitoring in the island that can optimize the efforts for water quality assessment and protection. Shared procedures for data collection, sample analysis, evaluation and data assessment by an open-access geodatabase were proposed and implemented for the first time as a prototype in order to improve accountability and outreach towards civil society and water users. The overall results reveal the high potential of a well-structured and effective joint monitoring approach within a complex, multi-stakeholder framework.

Til dokument

Sammendrag

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

Til dokument

Sammendrag

Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long-term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept-only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species-specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.

Til dokument

Sammendrag

Interactions among fungi and insects involve hundreds of thousands of species. While insect communities on plants have formed some of the classic model systems in ecology, fungus-based communities and the forces structuring them remain poorly studied by comparison. We characterize the arthropod communities associated with fruiting bodies of eight mycorrhizal basidiomycete fungus species from three different orders along a 1200-km latitudinal gradient in northern Europe. We hypothesized that, matching the pattern seen for most insect taxa on plants, we would observe a general decrease in fungal-associated species with latitude. Against this backdrop, we expected local communities to be structured by host identity and phylogeny, with more closely related fungal species sharing more similar communities of associated organisms. As a more unique dimension added by the ephemeral nature of fungal fruiting bodies, we expected further imprints generated by successional change, with younger fruiting bodies harboring communities different from older ones. Using DNA metabarcoding to identify arthropod communities from fungal fruiting bodies, we found that latitude left a clear imprint on fungus-associated arthropod community composition, with host phylogeny and decay stage of fruiting bodies leaving lesser but still-detectable effects. The main latitudinal imprint was on a high arthropod species turnover, with no detectable pattern in overall species richness. Overall, these findings paint a new picture of the drivers of fungus-associated arthropod communities, suggesting that latitude will not affect how many arthropod species inhabit a fruiting body but, rather, what species will occur in it and at what relative abundances (as measured by sequence read counts). These patterns upset simplistic predictions regarding latitudinal gradients in species richness and in the strength of biotic interactions.

Til dokument

Sammendrag

Changes in grassland management lead to alterations in community structure and can facilitate rapid expansion of both non-native and native invaders. Light availability differs greatly depending on grassland density, and competition for light is an important component of species dynamics. In this study, we examined if light reduction is an effective method to suppress a native invader in pre-alpine meadows of low to moderate land-use intensity. Our study focused on the effects of shading and other site conditions on vegetative and generative growth of Jacobaea aquatica, a poisonous hemicryptophyte regionally spreading in C Europe. We hypothesized that negative shade effects occur in addition to suppression by high grassland productivity, moist climate and less intense management. Furthermore, we postulated that shading affects vegetative growth more than reproduction. To understand the effects of shading we conducted a greenhouse experiment with plants grown under different shading nets. These results were compared to data gathered from 20 field sites that represented a distinct gradient in grassland management and shading. Overall, performance of generative J. aquatica plants was reduced by shading in the greenhouse, while density of vegetative plants was reduced in the field. In the greenhouse, plants affected by shading had significantly fewer flower heads and slightly smaller rosettes. Under field conditions, shading effects occurred together with additional environmental factors, while density of vegetative plants was significantly reduced by shading. Our data show that while realising high shading effects in the field is hard to accomplish, light reduction still has an influence on plant performance and population density, and could therefore be used to suppress the invasive native J. aquatica. In low to moderate intensity grasslands, suppression can be achieved by delaying the first mowing, thus enhancing shading. We conclude that manipulating environmental filters to increase resource competition is recommended as an alternative management tool to control the abundance of invasive native plants in grassland.

Sammendrag

The occurrence of freeze–thaw cycles modifies water infiltration processes and surface runoff generation. Related processes are complex and are not yet fully investigated at field scale. While local weather conditions and soil management practices are the most important factors in both runoff generation and surface erosion processes, local terrain heterogeneities may significantly influence soil erosion processes in catchments with undulating terrain. This paper presents a field-based investigation of spatial and temporal heterogeneities in subsurface soil moisture and soil temperature associated with freezing, thawing, and snowmelt infiltration. The field setup consists of a combination of traditional point measurements performed with frequency domain reflectometry (FDR) and electrical resistivity tomography (ERT). The transect was approximately 70 m long and spanned an entire depression with a north-facing slope (average slope of 11.5%) and a south-facing slope (average slope of 9.7%). The whole depression was entirely covered with stubble. Observed resistivity patterns correspond well to the measured soil moisture patterns. During the observation period, the north facing slope froze earlier and deeper compared with the south facing slope. Freeze–thaw cycles were less pronounced in the north-facing slope than in the south-facing slope. There were also differences in soil temperature and soil moisture patterns between lower and upper parts of the monitored depression. These indicate that initiation and development of runoff related processes, and consequently soil erosion, in regions with freeze–thaw cycles may differ significantly depending on local terrain characteristics. Consequently, it indicates that spatial terrain heterogeneities, especially slope aspects, may be important when studying soil erosion processes, water flow and nutrient leaching in lowlands where patchy snowpacks and dynamic freeze–thaw cycles are predominating.

Til dokument

Sammendrag

Chitin is one of the most diverse and naturally occurring biopolymers, and it is mainly present in crustaceans, insects, and fungi. Chitosan is derived from chitin by deacetylation process. It is important to note that the conventional chemical method of extracting chitin includes disadvantages and it poses various environmental issues. Recently, the green extraction techniques have perceived substantial development in the field of polymer chemistry. A variety of methods have been successfully developed using green extraction techniques for extracting chitin and chitosan from various resources. It includes the use of ionic liquids (ILs), deep eutectic solvents (DES), microbial fermentation, enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasonic-assisted extraction (UAE), subcritical water extraction (SWE), and electrochemical extraction (ECE). In this review, the extraction of chitin and chitosan using greener approaches were summarized. In addition, challenges, opportunities and future perspectives of green extraction methods have also been narrated.

Til dokument

Sammendrag

Background There is limited information on the effect of environment on vegetative growth in everbearing (EB) strawberry (Fragaria x ananassa Duch.) and its comparison with the situation in seasonal flowering types. Methods We investigated the effects of photoperiod (daylengths of 10 and 20 h) and temperature (12, 19 and 26 ℃) on leaf growth, dry matter production and partitioning, concentrations of soluble sugars, starch, and chlorophyll in the F1 hybrid ‘Delizzimo’ grown in a single experiment in daylight phytotron compartments in Norway. Results Plants grown in the long photoperiod (LD) and higher temperatures had greater leaf growth and higher dry matter production than those under short day (SD) and low temperature conditions. Growth decreased over the 39 days of the experiment. The changes in growth in the different environments were associated with changes in relative growth rate (RGR) and these were driven by changes in net assimilation rate (NAR) and leaf area ratio (LAR). The plants directed more dry matter to the leaves and crowns under LD and high temperature conditions and less dry matter to the roots, thus increasing the plant’s shoot to root ratio. Long days decreased the concentrations of sugars and starch in most of the tissues, while the effect of temperature was more complex. Higher temperatures increased the concentrations of sugars in the leaves in LD, while starch accumulated in the roots under SD and low temperature conditions. Sucrose accumulated temporarily in the crowns at the time of flower bud formation in LD and higher temperatures. Conclusions The results of the experiment demonstrate that the effects of photoperiod and temperature on the vegetative growth of everbearing strawberry are similar to those reported for seasonal-flowering strawberry. Increases in temperature and photoperiod and the resulting enhancement of the RGR was associated with accumulation of soluble sugars (sucrose, glucose and fructose) in the above-ground parts of the plant, whereas low temperature and SD resulted in accumulation of starch in the roots.

Til dokument

Sammendrag

Soil fungi are vital for regulating ecosystem carbon balance and productivity, by driving processes related to soil carbon and nutrient cycling. The rate and capacity of fungi-mediated processes are linked to fungal biomass dynamics and identifying the drivers of fungal biomass is important for predicting ecosystem responses to environmental changes. Here, ergosterol-based fungal biomass estimates and ITS2-based fungal community composition profiles were used to assess biomass of fungal guilds. Effects of forest management (thinning), environmental factors (soil chemical properties, microclimate, weather and forest stand composition) and season were related to the fungal biomass dynamics to identify the guild-specific drivers of biomass. Biomass of most fungal guilds increased with nutrient availability (nitrogen and potassium in particular) and decreased with forest thinning, and variation in total biomass was mainly driven by variation in mycorrhizal biomass. Most fungal guilds reached a minimum in biomass during summer except for mycorrhizal and root-associated ascomycetes, which instead reached a minimum during winter. Mycorrhizal fungi and root-associated ascomycetes displayed similar spatiotemporal variability in biomass. Yeasts and moulds were the only fungi displaying strong linkages with microclimate, whereas pathogenic and moss-associated fungi largely diverged in their responses to the environmental factors. The results of our study highlight that environmental factors related to the availability of soil nutrients may have an overall stronger effect on variation in biomass of fungal guilds in Mediterranean Pinus pinaster forests than direct influences of microclimate, weather and forest management.

Til dokument

Sammendrag

In Europe, turbot aquaculture has a high potential for sustainable production, but the low tolerance to fishmeal replacement in the diet represents a big issue. Therefore, this study investigated the effects of more sustainable feed formulations on growth and feed performance, as well as nutritional status of juvenile turbot in recirculating aquaculture systems. In a 16-week feeding trial with 20 g juvenile turbot, one control diet containing traditional fishmeal, fish oil and soy products and two experimental diets where 20% of the fishmeal was replaced either with processed animal proteins (PAP) or with terrestrial plant proteins (PLANT) were tested. Irrespective of diets, growth performance was similar between groups, whereas the feed performance was significantly reduced in fish of the PAP group compared to the control. Comparing growth, feed utilisation and biochemical parameters, the results indicate that the fish fed on PAP diet had the lowest performance. Fish fed the PLANT diet had similar feed utilisation compared to the control, whereas parameters of the nutritional status, such as condition factor, hepato-somatic index and glycogen content showed reduced levels after 16 weeks. These effects in biochemical parameters are within the physiological range and therefore not the cause of negative performance. Since growth was unaffected, the lower feed performance of fish that were fed the PAP formulation might be balanced by the cost efficient formulation in comparison to the commercial and the PLANT formulations. Present study highlights the suitability of alternative food formulation for farmed fish.

Til dokument

Sammendrag

Lumpfish is now the single most important cleaner fish species to date and there is an extensive lumpfish translocation along the Norwegian coast. A reliable baseline information about the population genetic structure of lumpfish is a prerequisite for an optimal managing of the species to minimize possible genetic translocation and avoid possible hybridisation and introgression with local populations. The current study is a follow up of the study of Jónsdóttir et al. (2018) using expressed sequence tag-short tandem repeats (EST-STRs) markers. Samples (N = 291) were analysed from six sample locations along the Norwegian coastline from south to north, with additional 18 samples of first-generation (from wild fish) reared fish from a fish farm outside Tromsø (North Norway). Present findings show a lack of population differentiation among lumpfish sampling population along the Norwegian coast using EST-STRs, which is in accordance with the findings of Jónsdóttir et al. (2018) where genomic STRs (g-STRs) were analysed. Present findings indicate that should translocated lumpfish escape from salmon sea pens in Norway, this will probably have little impact on the genetic composition of the local lumpfish population.

Til dokument

Sammendrag

Aquaculture industry is one of the world’s fastest and largest growing food producing sector. Most importantly, the usage of fish meal in aquaculture has been replaced with alternate protein sources due to their production cost, demand of raw materials and various environmental issues. The insect black soldier fly (Hermetia illucens) larval (BSFL) meal is being recognized as a feed ingredient in aquafeeds for their protein rich content similar to fish meal (FM). BSFL meal has been utilized as a fish meal or soy meal substitution in aquaculture to improve the nutrition. The culture of H. illucens larvae can be achieved using various biodegradable wastes and converted into a valuable biomass. In addition, the proximate analysis of H. illucens has been analyzed for its multifaceted role in poultry, cattle feed preparation and human consumption. The effectiveness of BSFL diet was analyzed for final body weight (FBW), specific growth rate (SGR), feed conversion ratio (FCR), feed intake (FI), feed efficiency (FE) and survival (SUR) of different fish and shrimp used as an experimental models with FM as the control diet. However, there is no comprehensive review available on the BSFL as an alternate protein source in aquaculture till date. Hence, the present review aimed to evaluate the feasible role of BSFL in feed, its sustainable production and challenges of BSFL meal in aquaculture sector along with their merits and demerits.

Sammendrag

Aim Grasslands of varying land-use intensity and history were studied to describe and test species richness and compositional patterns and their relationships with the physical environment, land cover of the surrounding landscape, patch geometry, and grazing. Location The mainland of Norway. Methods We utilized data from the Norwegian Monitoring Programme for Agricultural Landscapes, which recorded vascular plants from 569 plots, placed within 97 monitoring squares systematically distributed throughout agricultural land on the Norwegian mainland. We identified four grassland types: (i) moderately fertilized, moist meadows; (ii) overgrown agricultural land; (iii) cultivated pastures and disturbed ground; and (iv) natural/unfertilized and outfield pastures. Results Soil moisture and grazing measures were found to be important in explaining species compositional variation in all grassland types. Richness patterns were best explained by complex and differing combinations of environmental indicators. Nevertheless, negative (nitrogen and light level) or unimodal (pH) responses were similar across grassland types. Vegetation plots adjacent to areas historically and/or currently dominated by mires, forests, or pastures, as well as abandoned and overgrown grasslands, had a slightly higher species richness. Larger grasslands surrounding the vegetation plots had slightly less species than smaller grasslands. Conclusions This study demonstrates that data from a national monitoring programme on agricultural grasslands can be used for plant ecological research. The results indicate that climate-change-related shifts along moisture and nutrient gradients (increases) may alter both species composition and species richness in the studied grasslands. It is likely that large and contiguous managed (grass)land might affect areas perceived as remnants, probably caused by the transformation to homogeneous (agri)cultural landscapes reducing edge zones, which in turn may threaten the species pool and richness. The importance of land use and land-cover composition should be considered when planning management actions in extensively used high-latitude grasslands.

Til dokument

Sammendrag

The large brown seaweeds (kelps) are potential sources of protein for animal feed. They have lower protein contents than most red and green algae, but due to potential for large-scale production, they may represent a significant future protein source. The impact of pH, temperature and polysaccharide-degrading enzymes on the solubility and extraction yields of protein from wet Saccharina latissima biomass was investigated. The protein solubility increased with increasing pH and reached maximum of 23% at pH 11, determined as total amino acids (TAA). The enzyme treatments increased the release of soluble compounds by 30–35%. The highest protein yield obtained was 19%, using a ratio of water to wet seaweed of 1:1 for extraction. Even if the yields can be increased by increasing the water amounts used for extraction, the majority of the protein would remain in the insoluble residue after separation. The strategy for production of a larger quantity of protein-enriched biomass was therefore to maintain the insoluble fraction as the product. A pilot scale production was carried out, also including the red algae Palmaria palmata. In total 750 kg S. latissima and 195 kg P. palmata were processed. The protein content in the product increased from 10 to 20% of dry weight (dw) for S. latissima and from 12 to 28% for P. palmata, with yields of 79 and 69%, respectively. The ash content was reduced from 44 to 26% and from 12 to 5% of dw, respectively, for the two species. The main protein loss was free amino acids, which constituted approximately 10% of TAA in the feedstocks. Less essential than non-essential amino acids were lost, thus, the essential amino acids were enriched in the product.

Til dokument

Sammendrag

Grass-clover silage constitutes a large part of ruminant diets in Northern and Western Europe, but the impact of silage quality on methane (CH4) production is largely unknown. This study was conducted to identify the quality attributes of grass silage associated with variation in CH4 yield. We expected that silage nutrient concentrations and silage fermentation products would affect CH4 yield, and that these factors could be used to predict the methanogenic potential of the silages. Round bales (n = 78) of grass and grass-clover silage from 37 farms in Norway were sampled, incubated, and screened for in vitro CH4 yield, i.e. CH4 production expressed on the basis of incubated organic matter (CH4-OM) and digestible OM (CH4-dOM) using sheep. Concentration of indigestible neutral detergent fiber (iNDF) was quantified using the in situ technique. The data were subjected to correlation and principal component analyses. Stepwise multiple regression was used to model methanogenic potential of silages. Among all investigated silage composition variables, neutral detergent fiber (aNDFom) and water-soluble carbohydrate (WSC) concentrations obtained the greatest correlations to CH4-OM (r = −0.63 and r = 0.57, respectively, P < 0.001), while concentration of iNDF negatively correlated with CH4-OM (r = −0.48, P < 0.001). In vivo organic matter digestibility (OMD) and concentration of ammonia-N (NH3-N) in silages were also correlated to CH4-OM (r = 0.44 and r = −0.32, P < 0.001 and P < 0.01, respectively). The stepwise regression using CH4-OM as response variable included aNDFom, WSC, iNDF, silage propionic acid and pH in descending order. The stepwise regression using CH4-dOM as response variable included WSC, aNDFom and iNDF in descending order. Among in vitro rumen short chain fatty acids (SCFA), molar proportion of butyrate was the most prominent in increasing CH4-OM and CH4-dOM (r = 0.23 and r = 0.36, P < 0.05 and P < 0.01, respectively), while molar proportion of propionate was the most prominent SCFA in reducing CH4-OM and CH4-dOM (r = −0.23 and r = −0.26, respectively, P < 0.05). Regression models that account for silage quality attributes can be used to predict CH4 yield from silages with a coefficient of determination (R2) between 0.33 (CH4-dOM) and 0.65 (CH4-OM). In conclusion, concentration of WSC increased in vitro CH4-OM and CH4-dOM, while concentration of aNDFom and iNDF decreased CH4-OM and CH4-dOM in grass silages.

Til dokument

Sammendrag

Historically, the autumn dynamics of deciduous forest trees have not been investigated in detail. However, autumn phenological events, like onset of loss of canopy greenness (OLCG), onset of foliar senescence (OFS) and cessation of wood growth (CWG), have an important impact on tree radial growth and the entire ecosystem's seasonal dynamics. Here, we monitored the leaf and wood phenological events of silver birch (Betula pendula) at four different sites in Ås, southeastern Norway: (a) a natural mature stand, (b) a plantation on former agricultural ground, (c) young natural trees, and (d) young trees in pots under different fertilization levels. The study took place over four consecutive years (from 2017 to 2020), with a particular focus on 2018, a year in which there was a severe summer drought, and the next year, 2019, which featured more normal conditions. First, we provided a description of birch phenology within its mid-north distributional. Second, we showed that drought advanced CWG by about 5 to 6 weeks and it delayed OLCG and OFS up to 30 days. Third, we observed an unexpected advance in OLCG in 2019 compared to 2018 (30 days) and 2020 (14 days). OFS presented similar dynamics as OLCG, whereas CWG was advanced only in 2018. These findings might indicate lag-effects of severe drought on the next year autumn leaf phenology but not on wood growth. On the other hand, the comparison between the natural stand and the plantation showed that, under drought conditions, wood growth is more sensitive to site fertility than autumn leaf phenology. In summary, our study elucidated the autumn dynamics of an important deciduous forest species in the northern temperate zone and showed unexpected impacts of a severely dry and warm summer on the current and next year leaf phenology.

Til dokument

Sammendrag

Background Eimeria spp. are widespread apicomplexan parasites known to cause coccidiosis in livestock, resulting in reduced animal welfare and productivity, particularly in sheep. The treatment options are limited, and there is an emerging development of resistance against registered pharmaceuticals. Spruce bark is rich in plant secondary metabolites (PSM), such as condensed tannins, which are bioactive compounds previously shown to have antiparasitic activity. Here, we examined the anticoccidial properties of bark extract of Norway spruce (Picea abies) against a field isolate of ovine Eimeria spp. by treating Eimeria-infected pre-ruminant lambs with water-extracted bark daily for 12 days. We hypothesised that the bark extract would reduce the faecal oocyst excretion and, consequently, the severity of diarrhoea. Results Oral administration of spruce bark extract significantly reduced the excretion of Eimeria oocysts in milk-fed lambs post treatment till the end of the trial 22 days post infection. This difference in oocyst excretion between the treated and the untreated infected animals increased with time. Compared to the untreated and the sham-infected control group, the group treated with bark extract had softer faeces and reduced milk intake during the treatment period. After discontinuing the treatment, the treated animals got a more solid and formed faeces compared to that of the untreated control group, and the milk intake increased to the level of the sham-infected, untreated control group. The bark extract treated animals had a lower body weight and a lower mean daily body weight gain throughout the whole duration of the experiment. Conclusions Bark extract from Norway spruce showed marked anticoccidial properties by reducing the faecal oocyst count and associated diarrhoea in young lambs. Simultaneously we experienced detrimental effects of the treatment, displayed as reduced feed intake and daily body weight gain. Therefore, we suggest conducting similar studies with lower bark extract dosage to explore the possibilities of a better trade-off to reduce the negative impact while maintaining the antiparasitic effect. Keywords: Coccidia, Coccidiocide, Eimeria, Industrial by-products, Sheep

Sammendrag

Heat Field Deformation (HFD) is a widely used method to measure sap flow of trees based on empirical relationships between heat transfer within tree stems and the sap flow rates. As an alternative, the Linear Heat Balance (LHB) method implements the same instrumental configuration as HFD but calculates the sap flow rates using analytical equations that are derived from fundamental conduction-convection heat transfer theories. In this study, we systematically compared the sap flow calculated using the two methods based on data that were recorded using the same instrument. The measurements were conducted on four Norway spruce trees. We aimed to evaluate the discrepancies between the sap flow estimates from the two methods and determine the underlying causes. Diurnal and day-to-day patterns were consistent between the sap flow estimates from the two methods. However, the magnitudes of the estimated sap flow were different between them, where LHB resulted in much lower estimates in three trees and slightly higher estimates in one compared to HFD. We also observed larger discrepancies in negative (reversed flow) than in positive sap flow, where the LHB resulted in lower reversed flow than HFD. Consequently, the seasonal budget estimated by LHB can be as low as ∼20% of that estimated by HFD. The discrepancies can be mainly attributed to the low wood thermal conductivities for the studied trees that lead to substantial underestimations using the LHB method. In addition, the sap flow estimates were very sensitive to the value changes of the empirical parameters in the calculations and, thus, using a proper case-specific value is recommended, especially for the LHB method. Overall, we suggest that, despite the strong theoretical support, the correctness of LHB outputs depends largely on the tree individuals and should be carefully evaluated.

Til dokument

Sammendrag

Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic losses of eight hundred million euros per year. In conifers with low resinous heartwood such as species of Picea and Abies, these fungi are commonly confined to heartwood and thus external infection signs on the bark or foliage of trees are normally absent. Consequently, determining the extent of disease presence in a forest stand with field surveys is not practical for guiding forest management decisions such as optimal rotation time. Remote sensing technologies such as airborne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for classifying the presence or absence of rot in a single-tree-based framework. Ground reference data showing the presence of rot were collected by harvest machine operators during the harvest of forest stands. Random forest and support vector machine algorithms were used to classify the presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-absence classification of rot, although additional work remains to make the classifications usable for practical forest management.

Til dokument

Sammendrag

Land use and management affect soil hydrological processes, and the impacts can be further enhanced and accelerated due to climate change. In this study, we analyzed the possible long-term effects of different land use types on soil hydrological processes based on future climatic scenarios. Soil moisture and temperature probes were installed at four land use sites, a cropland, a vineyard, a meadow, and a forest area. Based on modeling of long-term changes in soil water content (SWC) using the HYDRUS 1D model, we found that changes in precipitation have a more pronounced effect on soil water content than changes in air temperature. Cropland is at the highest risk of inland water and SWC values above field capacity (FC). The number of days when the average SWC values are above FC is expected to increase up to 109.5 days/year from the current 52.4 days/year by 2081–2090 for the cropland. Our calculations highlight that the forest soil has the highest number of days per year where the SWC is below the wilting point (99.7 days/year), and based on the worst-case scenario, it can increase up to 224.7 days/year. However, general scenario-based estimates showed that vineyards are the most vulnerable to projected climate change in this area. Our study highlights the limitations of potential land use change for specific agricultural areas, and emphasizes the need to implement water retention measures to keep these agricultural settings sustainable.

Til dokument

Sammendrag

Despite substantial efforts to control locusts they remain periodically a major burden in Africa, causing severe yield loss and hence loss of food and income. Distribution maps indicating the value of the basic reproduction number R0 was used to identify areas where an insect pest can be controlled by a natural enemy. A dynamic process-based mathematical model integrating essential features of a natural enemy and its interaction with the pest is used to generate R0 risk maps for insect pest outbreaks, using desert locust and the entomopathogenic fungus Metarhizium acridum (Synn. Metarhizium anisoliae var. acridum) as a case study. This approach provides a tool for evaluating the impact of climatic variables such as temperature and relative humidity and mapping spatial variability on the efficacy of M. acridum as a biocontrol agent against desert locust invasion in Africa. Applications of M. acridum against desert locust in a few selected African countries including Morocco, Kenya, Mali, and Mauritania through monthly spatial projection of R0 maps for the prevailing climatic condition are illustrated. By combining mathematical modeling with a geographic information system in a spatiotemporal projection as we do in this study, the field implementation of microbial control against locust in an integrated pest management system may be improved. Finally, the practical utility of this model provides insights that may improve the timing of pesticide application in a selected area where efficacy is highly expected.

Til dokument

Sammendrag

Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles.

Til dokument

Sammendrag

The fall armyworm, Spodoptera frugiperda (J.E. Smith) is native to the Americas and a major pest of corn and several other crops of economic importance. The species has characteristics that make it of particular concern as an invasive pest, including broad host range, long-distance migration behavior, and a propensity for field-evolved pesticide resistance. The discovery of fall armyworm in western Africa in 2016 was followed by what was apparently a remarkably rapid spread throughout sub-Saharan Africa by 2018, causing economic damage estimated in the tens of billions USD and threatening the food security of the continent. Understanding the history of the fall armyworm invasion of Africa and the genetic composition of the African populations is critical to assessing the risk posed to different crop types, the development of effective mitigation strategies, and to make Africa less vulnerable to future invasions of migratory moth pests. This paper tested and expanded on previous studies by combining data from 22 sub-Saharan nations during the period from 2016 to 2019. The results support initial descriptions of the fall armyworm invasion, including the near absence of the strain that prefers rice, millet, and pasture grasses, while providing additional evidence that the magnitude and extent of FAW natural migration on the continent is more limited than expected. The results also show that a second entry of fall armyworm likely occurred in western Africa from a source different than that of the original introduction. These findings indicate that western Africa continues to be at high risk of future introductions of FAW, which could complicate mitigation efforts.

Til dokument

Sammendrag

Ecological rarity, characterized by low abundance or limited distribution, is typical of most species, yet our understanding of what factors contribute to the persistence of rare species remains limited. Consequently, little is also known about whether rare species might respond differently than common species to direct (e.g., abiotic) and indirect (e.g., biotic) effects of climate change. We investigated the effects of warming and exclusion of large herbivores on 14 tundra taxa, three of which were common and 11 of which were rare, at an inland, low-arctic study site near Kangerlussuaq, Greenland. Across all taxa, pooled commonness was reduced by experimental warming, and more strongly under herbivore exclusion than under herbivory. However, taxon-specific analyses revealed that although warming elicited variable effects on commonness, herbivore exclusion disproportionately reduced the commonness of rare taxa. Over the 15-year duration of the experiment, we also observed trends in commonness and rarity under all treatments through time. Sitewide commonness increased for two common taxa, the deciduous shrubs Betula nana and Salix glauca, and declined in six other taxa, all of which were rare. Rates of increase or decline in commonness (i.e., temporal trends over the duration of the experiment) were strongly related to baseline commonness of taxa early in the experiment under all treatments except warming with grazing. Hence, commonness itself may be a strong predictor of species’ responses to climate change in the arctic tundra biome, but large herbivores may mediate such responses in rare taxa, perhaps facilitating their persistence.

Sammendrag

Short-term trials on cultivated soil were planted with families of Norway spruce that had shown epigenetic memory effects in early tests up to age two years. Measurements and assessments were made of phenology traits, tree heights and stem defects until age 16 years in these trials. The memory effects of the temperature conditions during embryo development and seed maturation were confirmed for the timing of bud flush and for start and cessation of shoot elongation at age six years. The mean differences in timing of these events caused by temperature treatments were on average less than two days. They were considerably larger for families with strong effects on terminal bud set at the end of the first growing season. The memory effects did not result in a prolonged shoot growth period, nor did they affect height growth. Interaction effects expressed in adaptive traits between factorial treatments of temperature and daylength during seed production were large in the short-term trial and were still present at age nine years. The results presented demonstrate that strong memory effects observed in early tests may also be expressed in phenology traits for at least the next five growing seasons.

Til dokument

Sammendrag

Democratizing learning is essential for environmental sustainability. Less privileged areas are crucial in this regard. Informal education has great such potential, but often fails to reach the less privileged, and to document learning. With the objective to identify and counter these issues, we here report on EDU-ARCTIC, an informal open schooling course in environmental science, aimed at European teachers with teenage pupils. Of the 1,181 teachers who enrolled, 73% were females and 43% were from less privileged nations (according to UN Human Development Index). This is a higher share of less privileged (females) than is the case for the general population of Europe. Teachers from less privileged nations also participated in more project activities than did those from more privileged nations, apart from in urban areas. For the project period, the teachers reported a significant increase in all the three categories of aspired learning outcomes for their pupils. We conclude that courses like ours can increase teenagers’ literacy and engagement in science and environmental issues, not the least in less privileged areas. Deliberate efforts are required to reach these target groups, who may be less inclined to join on their own.

Til dokument

Sammendrag

The replacement of native birch with Norway spruce has been initiated in Norway to increase long-term carbon storage in forests. However, there is limited knowledge on the impacts that aboveground changes will have on the belowground microbiota. We examined which effects a tree species shift from birch to spruce stands has on belowground microbial communities, soil fungal biomass and relationships with vegetation biomass and soil organic carbon (SOC). Replacement of birch with spruce negatively influenced soil bacterial and fungal richness and strongly altered microbial community composition in the forest floor layer, most strikingly for fungi. Tree species-mediated variation in soil properties was a major factor explaining variation in bacterial communities. For fungi, both soil chemistry and understorey vegetation were important community structuring factors, particularly for ectomycorrhizal fungi. The relative abundance of ectomycorrhizal fungi and the ectomycorrhizal : saprotrophic fungal ratio were higher in spruce compared to birch stands, particularly in the deeper mineral soil layers, and vice versa for saprotrophs. The positive relationship between ergosterol (fungal biomass) and SOC stock in the forest floor layer suggests higher carbon sequestration potential in spruce forest soil, alternatively, that the larger carbon stock leads to an increase in soil fungal biomass.

Til dokument

Sammendrag

Some common ash trees (Fraxinus excelsior) show tolerance towards shoot dieback caused by the invasive ascomycete Hymenoscyphus fraxineus. Leaf petioles are considered to serve as a pathogen colonization route to the shoots. We compared four common ash clones with variation in disease tolerance, and included the native host, Manchurian ash (Fraxinus mandshurica), as a reference. Tissue colonization, following rachis inoculation by H. fraxineus, was monitored by histochemical observations and a quantitative polymerase chain reaction (qPCR) assay specific to H. fraxineus. Axial spread of the pathogen towards the petiole base occurred primarily within the phloem and parenchyma, tissues rich in starch in healthy petioles. In inoculated petioles, a high content of phenolics surrounded the hyphae, presumably a host defense response. There was a relationship between field performance and susceptibility to leaf infection in three of the four studied common ash clones, i.e., good field performance was associated with a low petiole colonization level and vice versa. Low susceptibility to leaf infection may counteract leaf-to-shoot spread of the pathogen in common ash, but the limited number of clones studied warrants caution and a larger study. The Manchurian ash clone had the highest petiole colonization level, which may suggest that this native host has evolved additional mechanisms to avoid shoot infection.

Til dokument

Sammendrag

Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar ‘Anitra’ are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.

Til dokument

Sammendrag

Modern apple orchard systems should guarantee homogeneity of fruit internal and external qualities and fruit maturity parameters. However, when orchards reach productive age, a variation of these parameters takes place and mostly it is related to uneven light distribution within the tree canopy. The aim of the study was to evaluate the canopy position’s effect on fruit internal and external quality parameters. This is the first study where all the main fruit quality and maturation parameters were evaluated on the same trees and were related to the light conditions and photosynthetic parameters. Four fruit positions were tested: top of the apple tree, lower inside part of the canopy, and east and west sides of the apple tree. Fruit quality variability was significant for fruit size, blush, colour indices, total sugar content, dry matter concentration, accumulation of secondary metabolites and radical scavenging activity. Fruit position in the canopy did not affect flesh firmness and fruit maturity parameters such as the starch index, Streif index and respiration rate. At the Lithuanian geographical location (55°60′ N), significantly, the highest fruit quality was achieved at the top of the apple tree. The tendency was established that apple fruits from the west side of the canopy have better fruit quality than from the east side and it could be related to better light conditions at the west side of the tree. Inside the canopy, fruits were distinguished only by the higher accumulation of triterpenic compounds and higher content of malic acid. Light is a main factor of fruit quality variation, thus all orchard management practices, including narrow two-dimensional tree canopies and reflecting ground covers which improve light penetration through the tree canopy, should be applied.

Til dokument

Sammendrag

Soil compaction (SC) is a major threat for agriculture in Europe that affects many ecosystem functions, such as water and air circulation in soils, root growth, and crop production. Our objective was to present the results from five short-term (<5 years) case studies located along the north–south and east–west gradients and conducted within the SoilCare project using soil-improving cropping systems (SICSs) for mitigating topsoil and subsoil SC. Two study sites (SSs) focused on natural subsoil (˃25 cm) compaction using subsoiling tillage treatments to depths of 35 cm (Sweden) and 60 cm (Romania). The other SSs addressed both topsoil and subsoil SC (˃25 cm, Norway and United Kingdom; ˃30 cm, Italy) using deep-rooted bio-drilling crops and different tillage types or a combination of both. Each SS evaluated the effectiveness of the SICSs by measuring the soil physical properties, and we calculated SC indices. The SICSs showed promising results—for example, alfalfa in Norway showed good potential for alleviating SC (the subsoil density decreased from 1.69 to 1.45 g cm−1) and subsoiling at the Swedish SS improved root penetration into the subsoil by about 10 cm—but the effects of SICSs on yields were generally small. These case studies also reflected difficulties in implementing SICSs, some of which are under development, and we discuss methodological issues for measuring their effectiveness. There is a need for refining these SICSs and for evaluating their longer-term effect under a wider range of pedoclimatic conditions.

Til dokument

Sammendrag

Bacteria isolated from onion bulbs suffering from bacterial decay in the United States and Norway were previously shown to belong to the genus Rahnella based on partial housekeeping gene sequences and/or fatty acid analysis. However, many strains could not be assigned to any existing Rahnella species. Additionally, strains isolated from creek water and oak as well as a strain with bioremediation properties were assigned to Rahnella based on partial housekeeping gene sequences. The taxonomic status of these 21 strains was investigated using multilocus sequence analysis, whole genome analyses, phenotypic assays and fatty acid analysis. Phylogenetic and phylogenomic analyses separated the strains into five clusters, one of which corresponded to Rahnella aceris . The remaining four clusters could be differentiated both genotypically and phenotypically from each other and existing Rahnella species. Based on these results, we propose the description of four novel species: Rahnella perminowiae sp. nov. (type strain SL6T=LMG 32257T=DSM 112609T), Rahnella bonaserana sp. nov. (H11bT=LMG 32256T=DSM 112610T), Rahnella rivi sp. nov. (FC061912-KT=LMG 32259T=DSM 112611T) and Rahnella ecdela sp. nov. (FRB 231T=LMG 32255T=DSM 112612T).

Til dokument

Sammendrag

Young children have unique nutritional requirements, and breastfeeding is the best option to support healthy growth and development. Concerns have been raised around the increasing use of milk-based infant formulas in replacement of breastfeeding, in regards to health, social, economic and environmental factors. However, literature on the environmental impact of infant formula feeding and breastfeeding is scarce. In this study we estimated the environmental impact of four months exclusive feeding with infant formula compared to four months exclusive breastfeeding in a Norwegian setting. We used life-cycle assessment (LCA) methodology, including the impact categories global warming potential, terrestrial acidification, marine and freshwater eutrophication, and land use. We found that the environmental impact of four months exclusive feeding with infant formula was 35–72% higher than that of four months exclusive breastfeeding, depending on the impact category. For infant formula, cow milk was the main contributor to total score for all impact categories. The environmental impact of breastfeeding was dependant on the composition of the lactating mother’s diet. In conclusion, we found that breastfeeding has a lower environmental impact than feeding with infant formula. A limitation of the study is the use of secondary LCA data for raw ingredients and processes.

Sammendrag

Microbial water quality is of vital importance for human, animal, and environmental health. Notably, pathogenically contaminated water can result in serious health problems, such as waterborne outbreaks, which have caused huge economic and social losses. In this context, the prompt detection of microbial contamination becomes essential to enable early warning and timely reaction with proper interventions. Recently, molecular diagnostics have been increasingly employed for the rapid and robust assessment of microbial water quality implicated by various microbial pollutants, e.g., waterborne pathogens and antibiotic-resistance genes (ARGs), imposing the most critical health threats to humans and the environment. Continuous technological advances have led to constant improvements and expansions of molecular methods, such as conventional end-point PCR, DNA microarray, real-time quantitative PCR (qPCR), multiplex qPCR (mqPCR), loop-mediated isothermal amplification (LAMP), digital droplet PCR (ddPCR), and high-throughput next-generation DNA sequencing (HT-NGS). These state-of-the-art molecular approaches largely facilitate the surveillance of microbial water quality in diverse aquatic systems and wastewater. This review provides an up-to-date overview of the advancement of the key molecular tools frequently employed for microbial water quality assessment, with future perspectives on their applications.

Til dokument

Sammendrag

The aim of this study was to examine the influence of shoot age on the biological and chemical properties of 13 black currant cultivars with different origins and ripening times. Phenological observations together with examined pomological and chemical characteristics were studied in two consecutive years at the experimental field near Belgrade, Serbia. The total content of phenols was estimated spectrophotometrically by the Folin-Ciocalteu method, while quantitative analysis of anthocyanin and flavonols aglycones was performed using a high-performance liquid chromatographic (HPLC) method. Principal component analysis was performed to establish differences in biological and chemical properties of black currants. Three-year-old shoots had an earlier start of all examined phenological stages, better generative potential, higher yields, while clusters and berries from 2-year-old shoots had significantly higher values for physical properties, total phenols, anthocyanin and flavanols aglycones and antiradical capacity. Late ripening cultivars had higher contents of all chemical compounds. The berries on 2-year-old shoots had total phenolics that ranged between 123.0 (‘Titania’) and 298.3 mg/100 g fresh weight (FW) (‘Ometa’), while total anthocyanins ranged between 398.5 (’Ojebyn’) and 1160.8 mg/kg FW (’Ometa’). According to the obtained results, cultivars ‘Ometa’, ‘Ben Lomond’, ‘Tsema’ and ‘Malling Juel’ can be recommended as the most promising for growing in the continental climate because they stood out with higher generative potential and yield, physical traits of cluster and berry, higher level of primary and secondary metabolites and DPPH activity in their berries.

Til dokument

Sammendrag

Commercial mushroom production is based on composted locally available agro-industrial wastes rich in carbon and nitrogen such as wheat straw supplemented with chicken manure. Either component can be replaced by other kinds of grain straw: barley, oat, or a mixture of different straw types and combined with diary manure—food waste digestate after anaerobic biogas digestion. Original, unseparated liquid digestate is nutritious, rich in nitrogen and organic matter. This research aimed to investigate the effect of digestate and different straw ratios on the composting process and productivity and their consequent effect on mushroom cultivation parameters of Agaricus subrufescens. All investigated experimental mushroom compost (EMC) types worked well during the composting process, reaching the desired moisture of 65–75%, N content of 1.43–1.93%, and a C/N ratio ranging from 21.5 to 29.1, supporting growth of mycelium and producing mushrooms. Supplementation with barley straw resulted in better EMC structure with the highest yield and biological efficiency (BE) (157.9 g kg−1; 64%), whereas oat addition gave the lowest yield and BE (88.6 g kg−1 and 38%). Precociousness (yield at mid-cycle of the crop development) was higher for oat substrates (68.9%), while earliness (days to harvest from casing) was lower for barley EMC.

Sammendrag

Environmental conditions during plant raising determine the yield potential of everbearing strawberries. We studied the effect of three rooting dates in the cultivars ‘Favori’ and ‘Murano’ in a greenhouse with 18 ℃ and 20-h long day and under outdoor conditions in Norway. The highest yield of 1.350 g/plant was obtained in ‘Favori’ plants rooted on 1 August and raised outdoors, being at level with ‘Favori’ plants produced in The Netherlands. High yields were mainly related to fruit size and less to fruit number, and determined by a complex three-factor interaction of rooting date, raising environment, and cultivar. The seasonal pattern of fruit flushes and off periods varied significantly between cultivars and treatments. The large first flush of high yielding ‘Favori’ plants was associated with a long off period, while the small first flush in ‘Murano’ resulted in a more even crop distribution. Earliness of ripening and berry harvest was superior in ‘Favori’, which had a larger share of its crop during the first half-season. We conclude that it is possible by choosing the right rooting date and raising environment to produce plants with the same high quality and yield potential under the cool Nordic conditions as those currently produced in Central Europe.

Sammendrag

Plants and fungi emit volatile organic compounds (VOCs) that are either constitutively produced or are produced in response to changes in their physico-chemical status. We hypothesized that these chemical signals could be utilized as diagnostic tools for plant diseases. VOCs from several common wheat pathogens in pure culture (Fusarium graminearum, Fusarium culmorum, Fusarium avenaceum, Fusarium poae, and Parastagonospora nodorum) were collected and compared among isolates of the same fungus, between pathogens from different species, and between pathogens causing different disease groups [Fusarium head blight (FHB) and Septoria nodorum blotch (SNB)]. In addition, we inoculated two wheat varieties with either F. graminearum or P. nodorum, while one variety was also inoculated with Blumeria graminis f.sp. tritici (powdery mildew, PM). VOCs were collected 7, 14, and 21 days after inoculation. Each fungal species in pure culture emitted a different VOC blend, and each isolate could be classified into its respective disease group based on VOCs with an accuracy of 71.4 and 84.2% for FHB and SNB, respectively. When all collection times were combined, the classification of the tested diseases was correct in 84 and 86% of all cases evaluated. Germacrene D and sativene, which were associated with FHB infection, and mellein and heptadecanone, which were associated with SNB infection, were consistently emitted by both wheat varieties. Wheat plants infected with PM emitted significant amounts of 1-octen-3-ol and 3,5,5-trimethyl-2-hexene. Our study suggests that VOC blends could be used to classify wheat diseases. This is the first step toward a real-time disease detection in the field based on chemical signatures of wheat diseases.

Til dokument

Sammendrag

Planting new forests has received scientific and political attention as a measure to mitigate climate change. Large, new forests have been planted in places like China and Ethiopia and, over time, a billion hectares could become available globally for planting new forests. Sustainable management of forests, which are available to wood production, has received less attention despite these forests covering at least two billion hectares globally. Better management of existing forests would improve forest growth and help mitigate climate change by increasing the forest carbon (C) stock, by storing C in forest products, and by generating wood-based materials substituting fossil C based materials or other CO2-emission-intensive materials. Some published research assumes a trade-off between the timber harvested from existing forests and the stock of C in those forest ecosystems, asserting that both cannot increase simultaneously. We tested this assumption using the uniquely detailed forest inventory data available from Finland, Norway and Sweden, hereafter denoted northern Europe. We focused on the period 1960 – 2017, that saw little change in the total area covered by forests in northern Europe. At the start of the period, rotational forestry practices began to diffuse, eventually replacing selective felling management systems as the most common management practice. Looking at data over the period we find that despite significant increases in timber and pulp wood harvests, the growth of the forest C stock accelerated. Over the study period, the C stock of the forest ecosystems in northern Europe increased by nearly 70%, while annual timber harvests increased at the about 40% over the same period. This increase in the forest C stock was close to on par with the CO2-emissions from the region (other greenhouse gases not included). Our results suggest that the important effects of management on forest growth allows the forest C stock and timber harvests to increase simultaneously. The development in northern Europe raises the question of how better forest management can improve forest growth elsewhere around the globe while at the same time protecting biodiversity and preserving landscapes.

Til dokument

Sammendrag

Populations of large herbivores, including members of the deer family Cervidae, are expanding across and within many regions of the northern hemisphere. Because their browsing on trees can result in economic losses to forestry and strongly affect ecosystems, it is becoming increasingly important to understand how best to mitigate resultant damage. Previous research has highlighted the importance of regulating deer density and the availability of alternative forage to reduce browsing damage levels in conifer production stands. However, often only one or two proxies of forage availability have been used instead of applying a broad foodscape approach and more knowledge is needed to understand which types of alternative forage best mitigate damage. We conducted field inventories of damage that occurred during the previous fall/winter in 112 production stands in southern Sweden, while also measuring forage availability and cervid faecal pellets in the surrounding landscape (16 ha). Local landowners provided data on supplementary feeding. We found that variation in cervid (Alces alces, Capreolus capreolus, Cervus elaphus and Dama dama) browsing damage to top shoots or stems of young Scots pine trees (Pinus sylvestris, hereon pine), was better explained by the availability of alternative natural forage (using several indices and species of trees and shrubs) than by supplementary feeding. The proportion of damaged pine trees was higher in stands with a lower density of pine stems; in landscapes with a lower density of key broadleaf tree species (genera Sorbus, Salix, Populus and Quercus); and in landscapes with more open land (agricultural fields and paddocks). Damage was also higher in stands where relatively large amounts of moose faeces was found, while not related to the amount of faeces from other cervid species. The amount of supplementary feed (silage or other types such as root vegetables) did not explain variation in pine damage, but the result was possibly affected by relatively few study areas supplying sufficient data on supplementary feeding. The results from our inventory illustrate the efficacy of using naturally growing forage to mitigate browsing damage to young pine trees in managed landscapes. Creation of such forage is also recommended over supplementary feeding because of co-benefits to forest biodiversity and ecosystem services.

Til dokument

Sammendrag

Wood resources have been essential for human welfare throughout history. Also nowadays, the volume of growing stock (GS) is considered one of the most important forest attributes monitored by National Forest Inventories (NFIs) to inform policy decisions and forest management planning. The origins of forest inventories closely relate to times of early wood shortage in Europe causing the need to explore and plan the utilisation of GS in the catchment areas of mines, saltworks and settlements. Over time, forest surveys became more detailed and their scope turned to larger areas, although they were still conceived as stand-wise inventories. In the 1920s, the first sample-based NFIs were introduced in the northern European countries. Since the earliest beginnings, GS monitoring approaches have considerably evolved. Current NFI methods differ due to country-specific conditions, inventory traditions, and information needs. Consequently, GS estimates were lacking international comparability and were therefore subject to recent harmonisation efforts to meet the increasing demand for consistent forest resource information at European level. As primary large-area monitoring programmes in most European countries, NFIs assess a multitude of variables, describing various aspects of sustainable forest management, including for example wood supply, carbon sequestration, and biodiversity. Many of these contemporary subject matters involve considerations about GS and its changes, at different geographic levels and time frames from past to future developments according to scenario simulations. Due to its historical, continued and currently increasing importance, we provide an up-to-date review focussing on large-area GS monitoring where we i) describe the origins and historical development of European NFIs, ii) address the terminology and present GS definitions of NFIs, iii) summarise the current methods of 23 European NFIs including sampling methods, tree measurements, volume models, estimators, uncertainty components, and the use of air- and space-borne data sources, iv) present the recent progress in NFI harmonisation in Europe, and v) provide an outlook under changing climate and forest-based bioeconomy objectives.

Til dokument

Sammendrag

It is expected that European Boreal and Temperate forests will be greatly affected by climate change, causing natural disturbances to increase in frequency and severity. To detangle how, through forest management, we can make forests less vulnerable to the impact of natural disturbances, we need to include the risks of such disturbances in our decision-making tools. The present review investigates: i) how the most important forestry-related natural disturbances are linked to climate change, and ii) different modelling approaches that assess the risks of natural disturbances and their applicability for large-scale forest management planning. Global warming will decrease frozen soil periods, which increases root rot, snow, ice and wind damage, cascading into an increment of bark beetle damage. Central Europe will experience a decrease in precipitation and increase in temperature, which lowers tree defenses against bark beetles and increases root rot infestations. Ice and wet snow damages are expected to increase in Northern Boreal forests, and to reduce in Temperate and Southern Boreal forests. However, lack of snow cover may increase cases of frost-damaged seedlings. The increased temperatures and drought periods, together with a fuel increment from other disturbances, likely enhance wildfire risk, especially for Temperate forests. For the review of European modelling approaches, thirty-nine disturbance models were assessed and categorized according to their required input variables and to the models’ outputs. Probability models are usually common for all disturbance model approaches, however, models that predict disturbance effects seem to be scarce.

Til dokument

Sammendrag

The hypothesis of the present study was that increased growth in spring, stimulated by increasing temperature and daylength, leads to oxidative stress in Atlantic salmon with accumulation of oxidation products in the tissues and increased utilization of antioxidants. The drop in fillet pigmentation and astaxanthin, often observed in spring by the industry, could be explained by oxidative stress. Furthermore, oxidative stress may cause production related diseases such as development of cataracts and melanin spots in the fillet. We sampled Atlantic salmon from two cages in a commercial scale experiment in Northern Norway (67°N), every month from April until August and then every second month until December (510 ± 160–3060 ± 510 g, mean weight ± std). The specific growth rate (SGR) increased with increasing temperature until midsummer and decreased thereafter. We found that vitamin E in the fillet and vitamin C in the liver were depleted in the spring and were restored in the autumn, even though the dietary concentrations were stable. Astaxanthin concentration in the muscle was constant during the spring and summer and increased in the autumn, concomitant with an increase in astaxanthin supplementation. Cataract increased from zero in May until July, when 90% of the fish were affected. The glutathione based redox-potential in the lenses became more reduced from June, indicating a protective mechanism against oxidative stress and cataract. The number of fish with melanin spots was high in June and decreased in August and October, but the size and intensity of the remaining spots increased in the same period. The change in vitamin C and E concentrations, cataract and glutathione metabolism during spring and early summer, indicate that the fish became oxidized in this period, while malon-di-aldehyde (MDA) and astaxanthin concentrations did not support the hypothesis. There are too few data to draw conclusions on possible effects of oxidative stress on melanin spots.

Til dokument

Sammendrag

Apple cultivars are one of the main factors setting the composition of bioactive compounds in apples and the quality of the fruit. However, research has been providing increasing amounts of data on the influence of rootstocks on the variations in the composition of bioactive compounds in apples. The aim of the study was to determine the influence of rootstocks on the changes in the qualitative and quantitative composition of phenolic compounds and their antioxidant activity in vitro in apple flesh and peel. HPLC analyses of phenolic compounds in apple samples were performed. The rootstock–scion combination had a significant effect on the composition and antioxidant activity of phenolic compounds in apple samples. Depending on the rootstock, the total content of phenolic compounds in apple flesh of the ‘Galaval’ cultivar could vary by 2.9 times, and in the peel by up to 90%. The genotype of the rootstock resulted in the highest variation in total flavan-3-ol content in apple flesh—by as much as 4.3 times—while the total content of flavonols varied by 2.1 times. In apple peel, on the contrary, the greatest variation was recorded for the total flavonol content (by 4.4 times), and the total flavan-3-ol content varied the least (by 1.8 times). A proper match of a cultivar and a rootstock can program a fruit tree to grow larger amounts of higher-quality, antioxidant-rich, and high-nutrition-value fruit.

Til dokument

Sammendrag

The reduction of copper-based plant-protection products with the final aim of phasing out has a high priority in European policy, as well as in organic agriculture. Our survey aims at providing an overview of the current use of these products in European organic agriculture and the need for alternatives to allow policymakers to develop strategies for a complete phasing out. Due to a lack of centralized databases on pesticide use, our survey combines expert knowledge on permitted and real copper use per crop and country, with statistics on organic area. In the 12 surveyed countries (Belgium, Bulgaria, Denmark, Estonia, France, Germany, Hungary, Italy, Norway, Spain, Switzerland, and the UK), we calculated that approximately 3258 t copper metal per year is consumed by organic agriculture, equaling to 53% of the permitted annual dosage. This amount is split between olives (1263 t y−1, 39%), grapevine (990 t y−1, 30%), and almonds (317 t y−1, 10%), followed by other crops with much smaller annual uses (<80 t y−1). In 56% of the allowed cases (countries × crops), farmers use less than half of the allowed amount, and in 27%, they use less than a quarter. At the time being, completely abandoning copper fungicides would lead to high yield losses in many crops. To successfully reduce or avoid copper use, all preventive strategies have to be fully implemented, breeding programs need to be intensified, and several affordable alternative products need to be brought to the market.

Til dokument

Sammendrag

Despite their important ecological roles for soil health and soil fertility, free-living nematodes (FLN) have received relatively limited research attention. The present study evaluated the community structure and diversity of FLN in a field setting. The experiments were conducted in on-farm and on-station field plots sown to maize (Zea mays) and beans (Phaseolus vulgaris) under four cropping practices. These farming systems included organic (compost and biopesticide use), conventional (synthetic fertilizer and pesticide applications), farmer practice (organic and synthetic amendments) and a control (non-amended plots). Nineteen genera of free living nematodes, belonging to bacterivores, fungivores, omnivores and predators were recorded. Among these, bacterivores (Cephalobidae and Rhabditidae) were the most dominant group in the organic systems when compared to the conventional and control systems. Farming systems influenced the abundance and diversity of free living nematodes, with the organic farming system having higher values of maturity, enrichment and structural indices than other farming systems. This would indicate greater stability in soil health and improved soil fertility. This implies that the organic farming systems play a key role in improving the biodiversity and population buildup of FLN, compared with other systems. Our study helps to improve our understanding of how farming systems influence soil biodynamics, while studies on the longer-term effects of organic and conventional farming systems on the build-up or reduction of free living nematodes for improved ecosystem services are needed.

Til dokument

Sammendrag

The banana weevil (Cosmopolites sordidus) and the burrowing nematode Radopholus similis represent two of the most important pests of bananas. Previously, colonization of banana plants by the non-pathogenic Fusarium oxysporum (isolate V5w2) and the entomopathogenic Beauveria bassiana (isolate WA) have been shown to increase host resistance to various banana pests and diseases. However, there is limited data on how the combined inoculation of these isolates would affect field performance of bananas. In this study, the fungal endophytes were inoculated separately and in combination. Tissue cultured plantlets of cooking banana cultivar Mbwazirume and dessert banana cultivar Grande Naine were inoculated by root drenching with a suspension of 1.0 × 107 spores mL−1 of the endophytes on three occasions, separated 4 weeks apart, before transplanting into the field. Each plantlet was further inoculated with 1800 nematodes, composed primarily of R. similis. Inoculation of banana plants with the fungal endophytes significantly reduced nematode densities by >34%. Similarly, plant toppling was lower in the endophyte-enhanced plants (<16.5%) compared with the control (23.3%). We also observed improved yield of the first crop cycle in the endophyte-enhanced plants, which yielded >11 t ha−1 year−1 versus 9 t ha−1 year−1 achieved in the non-inoculated plants. These findings demonstrate the benefits of fungal endophytes in improving the yield of both cooking and dessert bananas via suppression of nematode densities and nematode-related damage.

Til dokument

Sammendrag

CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.

Til dokument

Sammendrag

Accurate estimations of phenophases in deciduous trees are important to understand forest ecosystems and their feedback on the climate. In particular, the timing of leaf senescence is of fundamental importance to trees’ nutrient stoichiometry and drought tolerance and therefore to trees’ vigor and fecundity. Nevertheless, there is no integrated view on the significance, and direction, of seasonal trends in leaf senescence, especially for years characterized by extreme weather events. Difficulties in the acquisition and analyses of hierarchical data can account for this. We collected four years of chlorophyll content index (CCI) measurements in thirty-eight individuals of four deciduous tree species (Betula pendula, Fagus sylvatica, Populus tremula and Quercus robur) in Belgium, Norway and Spain, and analyzed these data using generalized additive models for location, scale and shape (GAMLSS). As a result, (I) the phenological strategy and seasonal trend of leaf senescence in these tree species could be clarified for exceptionally dry and warm years, and (II) the daily average (air) temperature, global radiation, and vapor pressure deficit could be established as main drivers behind the variation in the timing of the senescence transition date. Our results show that the onset of the re-organization phase in the leaf senescence, which we approximated and defined as local minima in the second derivative of a CCI graph, was in all species mainly negatively affected by the average temperature, global radiation and vapor pressure deficit. All together the variables explained 89 to 98% of the variability in the leaf senescence timing. An additional finding is that the generalized beta type 2 and generalized gamma distributions are well suited to model the chlorophyll content index, while the senescence transition date can be modeled using the normal-exponential-student-t, generalized gamma and zero-inflated Box-Cox Cole and Green distributions for beech, oak and birch, and poplar, respectively.

Til dokument

Sammendrag

Semi- and nonparametric models are popular in the area-based approach (ABA) using airborne laser scanning. It is unclear, however, how many predictors and training plots are needed to provide accurate predictions without overfitting. This work aims to explore these limits for various approaches: ordinary least squares regression (OLS), generalized additive models (GAM), least absolute shrinkage and selection operator (LASSO), random forest (RF), support vector machine (SVM), and Gaussian process regression (GPR). We modeled timber volume (m3·ha–1) for four boreal sites using ABA with 2–39 predictors and 20–500 training plots. OLS, GAM, LASSO, and SVM overfitted as the number of predictors approached the number of training plots. They required ≥15 plots per predictor to provide accurate predictions (RMSE ≤30%). GAM required ≥250 plots regardless of the number of predictors. The number of predictors only mildly affected RF and GPR, but they required ≥200 and ≥250 training plots, respectively. RF did not overfit in any circumstances, whereas GPR overfit even with 500 training plots. Overall, using up to 39 predictors did not generally result in overfit, and for most model types, it resulted in better accuracy for sufficiently large datasets (≥250 plots).

Sammendrag

Soil organic carbon (SOC) was studied at 0–45 cm depth after 28 years of cropping with arable and mixed dairy rotations on a soil with an initial SOC level of 2.6% at 0–30 cm. Measurements included both carbon concentration (SOC%) and soil bulk density (BD). Gross C input was calculated from yields. Averaged over all systems, topsoil SOC% declined significantly (−0.20% at 0–15 cm, p = 0.04, −0.39% at 15–30 cm, p = 0.05), but changed little at 30–45 cm (+0.11%, p = 0.15). Declines in topsoil SOC% tended to be greater in arable systems than in mixed dairy systems. Changes in BD were negatively related to those in SOC%, emphasizing the need to measure both when assessing SOC stocks. The overall SOC mass at 0–45 cm declined significantly from 98 to 89 Mg ha−1, representing a loss of 0.3% yr−1 of the initial SOC. Variability within systems was high, but arable cropping showed tendencies of high SOC losses, whilst SOC stocks appeared to be little changed in conventional mixed dairy with 50% ley and organic mixed dairy with 75% ley. The changes were related to the level of C input. Mean C input was 22% higher in mixed dairy than in arable systems.