Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

We calculate entropy and complexity of runoff time series and artificially generated series with long-range correlations. Entropy and complexity of data series may be represented against each other in a two-dimensional diagram which we will refer to as Complexity-Entropy Causality Plane, or CECP. We use a recently developed framework for these two indicators based on order statistics. It is well-known that runoff, as all other environmental time series actually measured, is a mixture of deterministic (signal) and stochastic (noise) parts, the latter due to noise inherent in the measurement process and externally induced by natural processes. The distinction between signal and noise is notoriously difficult and subject to much debate. In our approach, the observed series are compared to purely stochastic but long-range correlated processes, the k noise, where k is a parameter determining the strength of the correlations. Although these processes resemble runoff series in their correlation behavior and may be even tuned to any runoff series by changing the value of k, the CECP locations and in particular the order pattern statistics reveals qualitative differences between runoff and k noise. We use these differences to conclude on the deterministic nature of the (short-term) dynamics of the runoff time series. The proposed methodology also represents a stringent test bed for hydrological models.

To document

Abstract

Stand and disturbance dynamics are key processes that need to be assessed along with climate-species interactions if we are to better understand the impacts of climate change on species. In this study we investigated the biotic interactions (competition) between species, the influence of disturbance type, and changes in resource availability (moisture and light) on the response of six tree species to climate change in the northwest region of central British Columbia, Canada. Two ecological models were parameterized, linked together and coupled to climate change scenarios to explore the interactions between: (1) the response of species in the regeneration phase and (2) the role of disturbance, resource availability and competition on determining stand composition and productivity. Climate change was found to reduce soil moisture availability which resulted in a decline in regeneration potential for all species on dry sites and negative to neutral responses on sites with higher water availability. Following fire, stand dynamics and composition were modeled to undergo significant changes under the 2080s climate compared to current climate conditions on dry and mesic sites. Changes in stand dynamics under climate change were marginal following bark beetle disturbances. While significant changes to stand dynamics were found on dry sites, the presented results suggest that the sites with the highest moisture availability maintain the same general stand dynamics and composition following disturbances under climate change. This study highlights the need to consider species response to climate change in interaction with existing stand conditions, disturbance type, competition, resource availability, not just temperature and precipitation.

To document

Abstract

Climate change is a factor that largely contributes to the increase of forest areas affected by natural damages. Therefore, the development of methodologies for forest monitoring and rapid assessment of affected areas is required. Space-borne synthetic aperture radar (SAR) imagery with high resolution is now available for large-scale forest mapping and forest monitoring applications. However, a correct interpretation of SAR images requires an adequate preprocessing of the data consisting of orthorectification and radiometric calibration. The resolution and quality of the digital elevation model (DEM) used as reference is crucial for this purpose. Therefore, the primary aim of this study was to analyze the influence of the DEM quality used in the preprocessing of the SAR data on the mapping accuracy of forest types. In order to examine TerraSAR-X images to map forest dominated by deciduous and coniferous trees, High Resolution SpotLight images were acquired for two study sites in southern Germany. The SAR images were preprocessed with a Shuttle Radar Topography Mission (SRTM) DEM (resolution approximately 90 m), an airborne laser scanning (ALS) digital terrain model (DTM) (5 m resolution), and an ALS digital surface model (DSM) (5 m resolution). The orthorectification of the SAR images using high resolution ALS DEMs was found to be important for the reduction of errors in pixel location and to increase the classification accuracy of forest types. SAR images preprocessed with ALS DTMs resulted in the highest classification accuracies, with kappa coefficients of 0.49 and 0.41, respectively. SAR images preprocessed with ALS DTMs resulted in greater accuracy than those preprocessed with ALS DSMs in most cases. The classification accuracy of forest types using SAR images preprocessed with the SRTM DEM was fair, with kappa coefficients of 0.23 and 0.32, respectively.Analysis of the radar backscatter indicated that sample plots dominated by coniferous trees tended to have lower scattering coefficients than plots dominated by deciduous trees. Leaf-off images were only slightly better suited for the classification than leaf-on images. The combination of leaf-off and leaf-on improved the classification accuracy considerably since the backscatter changed between seasons, especially in deciduous-dominated forest.

Abstract

Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum. In the pathogen-compromised reaction zone, upregulation of an oxaloacetase gene generating oxalic acid coincided with oxalate and cation accumulation and presence of calcium oxalate crystals. The colonized inner heartwood showed trace amounts of oxalate. Moreover, fungal exposure to the reaction zone under laboratory conditions induced oxaloacetase and oxalate accumulation, whereas heartwood induced a decarboxylase gene involved in degradation of oxalate. The excess level of cations in defense xylem inactivates pathogen-secreted oxalate through precipitation and, presumably, only after cation neutralization can oxalic acid participate in lignocellulose degradation. This necessitates enhanced production of oxalic acid by H. parviporum. This study is the first to determine the true influence of white-rot fungi on oxalate crystal formation in tree xylem.