Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.
Authors
Tove Vaaje-KolstadAbstract
No abstract has been registered
Authors
Christina SoggeAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Aim Current global warming is driving changes in biological assemblages by increasing the number of thermophilic species while reducing the number of cold-adapted species, leading to thermophilization of these assemblages. However, there is increasing evidence that thermophilization might not keep pace with global warming, resulting in thermal lags. Here, we quantify the magnitude of thermal lags of plant assemblages in Norway during the last century and assess how their spatio-temporal variation is related to variables associated with temperature-change velocity, topographic heterogeneity, and habitat type. Location Norway. Time period 1905–2007. Major taxa studied Vascular plants. Methods We inferred floristic temperature from 16,351 plant assemblages and calculated the floristic temperature anomaly (difference between floristic temperature and baseline temperature) and thermal lag index (difference between reconstructed floristic temperature and observed climatic temperature) from 1905 until 2007. Using generalized least squares models, we analysed how the variation in observed lags since 1980 is related to temperature-change velocity (measured as magnitude, rate of temperature change, and distance to past analogous thermal conditions), topographic heterogeneity, and habitat type (forest versus non-forest), after accounting for the baseline temperature. Results The floristic temperature anomaly increases overall during the study period. However, thermophilization falls behind temperature change, causing a constantly increasing lag for the same period. The thermal lag index increases most strongly in the period after 1980, when it is best explained by variables related to temperature-change velocity. We also find a higher lag in non-forested areas, while no relationship is detected between the degree of thermal lag and fine-scale topographic heterogeneity. Main conclusions The thermal lag of plant assemblages has increased as global warming outpaces thermophilization responses. The current lag is associated with different dimensions of temperature-change velocity at a broad landscape scale, suggesting specifically that limited migration is an important contributor to the observed lags.
Abstract
This report provides an overview of resources for feed production from Norwegian bioresources. We look at present use of agricultural land, outfield pasture, forestry production and processing and present harvesting of bioresources from the ocean, as well as cultivation of marine organisms. We also look alternative uses of resources to produce feed.
Abstract
No abstract has been registered
Authors
Anne Lyche Solheim Anne Tolvanen Eva Skarbøvik Bjørn Kløve Dennis Collentine Brian Kronvang Gitte Blicher-Mathiesen Fatemeh Hashemi Artti Juutinen Seppo Hellsten Eija Pouta Jan VermaatAbstract
Future development of bioeconomy is expected to change land use in the Nordic countries in agriculture and forestry. The changes are likely to affect water quality due to changes in nutrient run-off. To explore possible future land-use changes and their environmental impact, stakeholders and experts from four Nordic countries (Denmark, Finland, Norway and Sweden) were consulted. The methodological framework for the consultation was to identify a set of relevant land-use attributes for agriculture and forestry, e.g. tillage conservation effort, fertiliser use, animal husbandry, biogas production from manure, forestry management options, and implementation of mitigation measures, including protection of sensitive areas. The stakeholders and experts provided their opinions on how these attributes might change in terms of their environmental impacts on water quality given five Nordic bioeconomic scenarios (sustainability, business as usual, self-sufficiency, cities first and maximizing economic growth). A compilation methodology was developed to allow comparing and merging the stakeholder and expert opinions for each attribute and scenario. The compiled opinions for agriculture and forestry suggest that the business-as-usual scenario may slightly decrease the current environmental impact for most attributes due to new technologies, but that the sustainability scenario would be the only option to achieve a clear environmental improvement. In contrast, for the self-sufficiency scenario, as well as the maximum growth scenario, a deterioration of the environment and water quality was expected for most of the attributes. The results from the stakeholder consultations are used as inputs to models for estimating the impact of the land-use attributes and scenarios on nutrient run-off from catchments in the Nordic countries (as reported in other papers in this special issue). Furthermore, these results will facilitate policy level discussions concerning how to facilitate the shift to bioeconomy with increasing biomass exploitation without deteriorating water quality and ecological status in Nordic rivers and lakes.
Abstract
No abstract has been registered
Authors
Eric Post Elina Kaarlejärvi Marc Macias-Fauria David A. Watts Pernille Sporon Bøving Sean M. P. Cahoon R. Conor Higgins Christian John Jeffrey T. Kerby Christian Pedersen Mason Post Patrick F. SullivanAbstract
Biodiversity is declining globally in response to multiple human stressors, including climate forcing. Nonetheless, local diversity trends are inconsistent in some taxa, obscuring contributions of local processes to global patterns. Arctic tundra diversity, including plants, fungi, and lichens, declined during a 15-year experiment that combined warming with exclusion of large herbivores known to influence tundra vegetation composition. Tundra diversity declined regardless of experimental treatment, as background growing season temperatures rose with sea ice loss. However, diversity declined slower with large herbivores than without them. This difference was associated with an increase in effective diversity of large herbivores as formerly abundant caribou declined and muskoxen increased. Efforts that promote herbivore diversity, such as rewilding, may help mitigate impacts of warming on tundra diversity.