Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

The dimensional stabilisation of wood using thermosetting resins relies on the resin uptake into the cell walls. This study tested if a conditioning step after the impregnation and before the final heat-curing enhances the cell wall uptake to improve dimensional stabilisation without increasing the chemical consumption. Small blocks of Scots pine sapwood were vacuum-impregnated with an aqueous melamine formaldehyde solution and conditioned at 33, 70, or 95 % RH for up to 1 week before drying and curing the blocks at 103 °C. However, the conditioning step decreased the cell wall bulking and the moisture exclusion effect compared to the immediate heat curing of the impregnated samples. Analyses of the resin-treated samples by scanning electron microscopy, IR spectroscopy and confocal Raman microspectroscopy provided evidence of wood hydrolysis and polycondensation of the resin within the cell lumen during the conditioning step. Hydrolysis and removal of wood constituents may have counterbalanced the cell wall bulking of the resin. Polycondensation of the resin in the lumen increased its molecule size, which could have hindered the cell wall diffusion of the resin.

To document

Abstract

In forest ecosystems, fungi are the key actors in wood decay. They have the capability to degrade lignified substrates and the woody biomass of coniferous forests, with brown rot fungi being common colonizers. Brown rots are typically involved in the earliest phase of lignocellulose breakdown, which therefore influences colonization by other microorganisms. However, few studies have focused on the impact of introducing decayed wood into forest environments to gauge successional colonization by natural bacterial and fungal communities following partial decay. This study aimed to address this issue by investigating the bacterial and fungal colonization of Norway spruce (Picea abies) wood, after intermediate and advanced laboratory-based, pre-decay, by the brown rot fungus Gloeophyllum trabeum. Using Illumina metabarcoding, the in situ colonization of the wood blocks was monitored 70 days after the blocks were placed on the forest floor and covered with litter. We observed significant changes in the bacterial and fungal communities associated with the pre-decayed stage. Further, the wood substrate condition acted as a gatekeeper by reducing richness for both microbial communities and diversity of fungal communities. Our data also suggest that the growth of some fungal and bacterial species was driven by similar environmental conditions.