Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2020
Abstract
No abstract has been registered
Authors
Melissa Magerøy Erik Christiansen Bo Långström Anna-Karin Borg-Karlson Halvor Solheim Niklas Björklund Tao Zhao Axel Schmidt Carl Gunnar Fossdal Paal KrokeneAbstract
No abstract has been registered
Authors
Shaoqiang Ni Xiao Huang Weixiu Gan Conrad Zorn Yuchen Xiao Guorui Huang Chaoqing Yu Jifu Cao Jie Zhang Zhao Feng Le Yu Guanghui Lin Hanna Marika SilvennoinenAbstract
No abstract has been registered
Authors
D. Balasubramanian Wen-Jun Zhou Hong-Li Ji John Grace Xiao-Long Bai Qing-Hai Song Yun-Tong Liu Li-Qing Sha Xue-Hai Fei Xiang Zhang Junbin Zhao Jun-Fu Zhao Zheng-Hong Tan Yi-Ping ZhangAbstract
In order to predict the effects of climate change on the global carbon cycle, it is crucial to understand the environmental factors that affect soil carbon storage in grasslands. In the present study, we attempted to explain the relationships between the distribution of soil carbon storage with climate, soil types, soil properties and topographical factors across different types of grasslands with different grazing regimes. We measured soil organic carbon in 92 locations at different soil depth increments, from 0 to 100 cm in southwestern China. Among soil types, brown earth soils (Luvisols) had the highest carbon storage with 19.5 ± 2.5 kg m−2, while chernozem soils had the lowest with 6.8 ± 1.2 kg m−2. Mean annual temperature and precipitation, exerted a significant, but, contrasting effects on soil carbon storage. Soil carbon storage increased as mean annual temperature decreased and as mean annual precipitation increased. Across different grassland types, the mean carbon storage for the top 100 cm varied from 7.6 ± 1.3 kg m−2 for temperate desert to 17.3 ± 2.9 kg m−2 for alpine meadow. Grazing/cutting regimes significantly affected soil carbon storage with lowest value (7.9 ± 1.5 kg m−2) recorded for cutting grass, while seasonal (11.4 ± 1.3 kg m−2) and year-long (12.2 ± 1.9 kg m−2) grazing increased carbon storage. The highest carbon storage was found in the completely ungrazed areas (16.7 ± 2.9 kg m−2). Climatic factors, along with soil types and topographical factors, controlled soil carbon density along a soil depth in grasslands. Environmental factors alone explained about 60% of the total variation in soil carbon storage. The actual depth-wise distribution of soil carbon contents was significantly influenced by the grazing intensity and topographical factors. Overall, policy-makers should focus on reducing the grazing intensity and land conversion for the sustainable management of grasslands and C sequestration.
Abstract
Acetylated wood is a durable and dimensionally stable product with many potential applications in exterior timber structures. Research has shown that acetylated wood can be effectively bonded by various adhesive types. However, one of the most commonly used adhesives for timber constructions, melamine urea formaldehyde (MUF), shows poor performance in combination with acetylated wood in delamination tests based on cyclic wetting and drying. The hydrophobic acetylated wood surface leads to reduced adhesion due to poorer adhesive wetting and fewer chemical bonds between the resin and the wood polymers. The use of a resorcinol-formaldehyde (RF)-based primer on the acetylated wood surface prior to the application of MUF leads to positive gluing results with both acetylated radiata pine and beech, providing significantly improved resistance to delamination. Radial penetration of the primer and MUF in acetylated wood shows higher penetration compared with untreated wood. In addition, a phenol resorcinol-formaldehyde adhesive system showed high resistance against delamination and can be used for gluing of acetylated wood.
Authors
Hans Renes Csaba Centeri Sebastian Eiter Bénédicte Gaillard Alexandra Kruse Zdenek Kucera Oskar Puschmann Michael Roth Martina SlámováAbstract
From the Middle Ages until the twentieth century, water meadows in Europe were primarily irrigated to improve their productivity and to lengthen the growing season. They were water management systems designed to collect and use water and to discharge it: water had to be kept moving. This chapter presents a general overview and a history of research on European water meadows. It also examines examples from the sandy landscapes of northwestern Europe, from Slovakia, and Norway. Three main types of water meadows are distinguished: simple dam systems, more elaborate catchworks, and highly developed bedworks. Of these, bedworks were technically and organizationally the most complex; they were also the most costly in construction and maintenance. Most water meadows were abandoned in the twentieth century; in many places, however, their traces can still be recognized in the landscape. They are both an interesting part of European agrarian and landscape heritage and a carrier of regional identity. In recent years, a number of water meadows have been restored, for ecological, water management, tourism, and heritage purposes.
Abstract
No abstract has been registered
2019
Authors
Sissel Hansen Randi Berland Frøseth Maria Stenberg Jaroslaw Stalenga Jørgen E. Olesen Maike Krauss Paweł Radzikowski Jordi Doltra Shahid Nadeem Torfinn Torp Valentina Pappa Christine A. WatsonAbstract
bstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) have considerable negative impacts on climate and the environment. Although these environmental burdens are on average less per unit area in organic than in non-organic production, they are not smaller per unit of product. If organic farming is to maintain its goal of being an environmentally friendly production system, these emissions should be mitigated. We discuss the impact of possible triggers within organic arable farming practice for the risk of N2O emissions and NO3 leaching under European climatic conditions, and possible strategies to reduce these. Organic arable crop rotations can be characterised as diverse with frequent use of legumes, intercropping and organic fertilizers. The soil organic matter content and share of active organic matter, microbial and faunal activity are higher, soil structure better and yields lower, than in non-organic, arable crop rotations. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is high potential for SMN accumulation and losses after crop termination or crop harvest. The risk for high N2O fluxes is increased when large amounts of herbage or organic fertilizers with readily available nitrogen (N) and carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mixing with rotary harrow further enhance the risk for high N2O fluxes. These complex soil N dynamics mask the correlation between total N-input and N2O emissions from organic arable crop rotations. Incorporation of N rich plant residues or mechanical weeding followed by bare fallow increases the risk of nitrate leaching. In contrast, strategic use of deep-rooted crops with long growing seasons in the rotation reduces nitrate leaching risk. Reduced tillage can reduce N leaching if yields are maintained. Targeted treatment and use of herbage from green manures, crop residues and catch crops will increase N efficiency and reduce N2O emissions and NO3 leaching. Continued regular use of catch crops has the potential to reduce NO3 leaching but may enhance N2O emissions. A mixture of legumes and non-legumes (for instance grasses or cereals) are as efficient a catch crop as monocultures of non-legume species.
Authors
Solrun Karlsen LieAbstract
No abstract has been registered
Authors
Vetle Schwensen LindgrenAbstract
No abstract has been registered