Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Purpose of Review Forestry in northern temperate and boreal regions relies heavily on conifers. Rapid climate change and associated increases in adverse growing conditions predispose conifers to pathogens and pests. The much longer generation time and presumably, therefore, lower adaptive capacity of conifers relative to their native or non-native biotic stressors may have devastating consequences. We provide an updated overview of conifer defences underlying pathogen and pest resistance and discuss how defence traits can be used in tree breeding and forest management to improve resistance. Recent Findings Breeding of more resilient and stress-resistant trees will benefit from new genomic tools, such as genotyping arrays with increased genomic coverage, which will aid in genomic and relationship-based selection strategies. However, to successfully increase the resilience of conifer forests, improved genetic materials from breeding programs must be combined with more flexible and site-specific adaptive forest management. Summary Successful breeding programs to improve conifer resistance to pathogens and pests provide hope as well as valuable lessons: with a coordinated and sustained effort, increased resistance can be achieved. However, mechanisms underlying resistance against one stressor, even if involving many genes, may not provide any protection against other sympatric stressors. To maintain the adaptive capacity of conifer forests, it is important to keep high genetic diversity in the tree breeding programs. Choosing forest management options that include diversification of tree-species and forest structure and are coupled with the use of genetically improved plants and assisted migration is a proactive measure to increase forest resistance and resilience to foreseen and unanticipated biotic stressors in a changing climate.

To document

Abstract

In Norway, cover crops were introduced to prevent loss of nitrogen and phosphorous from fields to waterways. Today, cover crops are also used to restore soil organic matter and improve soil health. Yet, the direction and magnitude of these effects are variable, and little is known about the persistence of the C derived from the cover crops in the soil. In the CAPTURE project, we evaluated the soil C sequestration potential from different cover crops used in the main cereal production areas in Norway. To do so, we used pulse labelling with 13C (CO2) to label four different cover crop species Italian ryegrass, phacelia, oilseed radish and summer vetch through their growing period. Cover crops were grown in a monoculture to enable the labelling. The results of the first year of the experiment show that cover crops produced 10- 14 Mg ha-1 above ground biomass, corresponding to 4-6 Mg C ha-1. At the end of the growing season, 3-5% of cover crop C was found in the soil particulate organic matter (POM) fraction and 2-4% in the soil mineral organic matter fraction (MAOM). In the following years, the fate of C derived from the cover crops in the soil will be determined. Furthermore, the soil C sequestration of the different cover crops will be scaled to barley plots in the same experiment, to which cover crops had been undersown in spring or summer. In these plots, N2O emissions have been measured through the whole year. The greenhouse gas trade-offs of cover crops in Norwegian cereal production will be estimated.

To document

Abstract

Bacterial canker, caused by Pseudomonas syringae pv. syringae and pv. morsprunorum, is one of the most important diseases of stone fruit trees (Prunus spp.). The pathogen infects buds, flowers, fruitlets, leaves and shoots, from which the disease spreads to the branches, boughs and trunks, causing necrosis and cankers. The efficacy of different chemical and biological products for the control of bacterial canker on stone fruit trees was tested in 2018–2021. The experiments were conducted in sour cherry, plum and sweet cherry orchards in central Poland. Foliar application of the tested preparations was performed three times a season. The biological efficacy of the tested products in the control of bacterial canker was evaluated on sour cherry on the basis of infected leaves and fruits and on plum and sweet cherry on the basis of infected leaves. The highest efficacy was observed for products containing various forms of copper—copper oxide, copper oxychloride and copper hydroxide—as well as fertilizers with copper gluconate and the fungicide Luna Care 71.6 WG (fluopyram and fosetyl-Al). However, the biological preparations were significantly less effective. The conducted studies showed that preparations based on copper gluconate can be a valuable alternative to typical copper fungicides.