Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Abstract

Pollarding in agroforestry systems was traditionally an important practice for fodder acquisition in Western Norway, as well as in many other parts of the world. The practice has long been in decline, but to maintain cultural landscapes and biodiversity enhancement from pollarding, farmers now receive a public grant for each tree they pollard. In this interdisciplinary study we investigate which ecosystem services modern pollarding practices provide, under the influence of the current pollarding policy. We have performed both in-depth interviews and a quantitative survey targeting all pollarding farmers in the county of Vestland in Western Norway. We find that bioresources obtained from the branches from pollarding are to some extent still taken into use, mainly in the form of tree fodder for farm animals and firewood, but a lot of the branches remain unused. Biodiversity benefits are obtained from preserving old trees that often are located on agricultural land as solitary trees, as these trees provide important habitats, particularly for species growing on the bark, such as lichens and mosses, or within the decaying wood, such as, for example, fungi and insects. The modern practice of letting branches rot in the field provide habitats for insects and hence additional benefits to biodiversity. For the farmers, the main motivations to pollard are the cultural, aesthetic and historical values of pollarded trees. They see few disadvantages with pollarding, and most of them plan to continue in the future. The grant provides an incentive for pollarding, but our results indicate that the practice would continue without it, although less than now, especially with the establishment of new pollards.

2023

Abstract

Motion planning algorithms have seen considerable progress and expansion across various domains of science and technology during the last few decades, where rapid advancements in path planning and trajectory optimization approaches have been made possible by the conspicuous enhancements brought, among others, by sampling-based methods and convex optimization strategies. Although they have been investigated from various perspectives in the existing literature, recent developments aimed at integrating robots into social, healthcare, industrial, and educational contexts have attributed greater importance to additional concepts that would allow them to communicate, cooperate, and collaborate with each other, as well as with human beings, in a meaningful and efficient manner. Therefore, in this survey, in addition to a brief overview of some of the essential aspects of motion planning algorithms, a few vital considerations required for assimilating robots into real-world applications, including certain instances of social, urban, and industrial environments, are introduced, followed by a critical discussion of a set of outstanding issues worthy of further investigation and development in future scientific studies.

Abstract

Sustainable forest management systems require operational measures to preserve the functional design of forest roads. Frequent road data collection and analysis are essential to support target-oriented and efficient maintenance planning and operations. This study demonstrates an automated solution for monitoring forest road surface deterioration using consumer-grade optical sensors. A YOLOv5 model with StrongSORT tracking was adapted and trained to detect and track potholes in the videos captured by vehicle-mounted cameras. For model training, datasets recorded in diverse geographical regions under different weather conditions were used. The model shows a detection and tracking performance of up to a precision and recall level of 0.79 and 0.58, respectively, with 0.70 mean average precision at an intersection over union (IoU) of at least 0.5. We applied the trained model to a forest road in southern Norway, recorded with a Global Navigation Satellite System (GNSS)−fitted dashcam. GNSS-delivered geographical coordinates at 10 Hz rate were used to geolocate the detected potholes. The geolocation performance over this exemple road stretch of 1 km exhibited a root mean square deviation of about 9.7 m compared to OpenStreetMap. Finally, an exemple road deterioration map was compiled, which can be used for scheduling road maintenance operations.

To document

Abstract

Butt rot is a main defect in Norway spruce (Picea abies (L.) Karst.) trees and causes large economic losses for forest owners. However, little empirical research has been done on the effects of butt rot on harvested roundwood and the magnitude of the resulting economic losses. The main objective of this study was to characterize the direct economic losses caused by butt rot in Norway spruce trees for Norwegian forest owners. We used data obtained from seven cut-to-length harvesters, comprising ∼400,000 trees (∼140,000 m3) with corresponding stem profiles and wood grade information. We quantified the economic losses due to butt rot using bucking simulations, for which in a first case, defects caused by butt rot were included, and in a second case, all trees were assumed to be free of butt rot. 16% of trees were affected by butt rot, whereby butt rot tended to occur in larger trees. When butt rot was present in a tree, the saw log volume was reduced by 48%. Proportions of roundwood volume affected by butt rot varied considerably across harvested stands. Our results suggest that butt rot causes economic losses upwards of 7% of wood revenues, corresponding to € 18.5 million annually in Norway.