Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Authors
Belachew Gizachew Zeleke Deo D. Shirima Jonathan Rizzi Collins Byobona Kukunda Eliakimu ZahabuAbstract
Tanzania dedicates a substantial proportion (38%) of its territory to conservation, with a large number of Protected Areas (PAs) managed under various regimes. Nevertheless, the country still experiences high rates of deforestation, which threaten the ecological integrity and socio-economic benefits of its forests. We utilized the Global Forest Change Dataset (2012–2022) and implemented a Propensity Score Matching (PSM) approach followed by a series of binomial logit regression modeling. Our objectives were to evaluate (1) the likelihood of PAs in avoiding deforestation compared with unprotected forest landscapes, (2) the variability in effectiveness among the different PA management regimes in avoiding deforestation, (3) evidence of leakage, defined here as the displacement of deforestation beyond PA boundaries as a result of protection inside PAs. Our findings reveal that, despite ongoing deforestation within and outside of PAs, conservation efforts are, on average, three times more likely to avoid deforestation compared with unprotected landscapes. However, the effectiveness of avoiding deforestation significantly varies among the different management regimes. National Parks and Game Reserves are nearly ten times more successful in avoiding deforestation, likely because of the stringent set of regulations and availability of resources for implementation. Conversely, Nature Forest Reserves, Game Controlled Areas, and Forest Reserves are, on average, only twice as likely to avoid deforestation, indicating substantial room for improvement. We found little evidence of the overall leakage as a consequence of protection. These results highlight the mixed success of Tanzania’s conservation efforts, suggesting opportunities to enhance the effectiveness of many less protected PAs. We conclude by proposing potential strategic pathways to enhance further the climate and ecosystem benefits of conservation in Tanzania.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Climate change is and will continue to alter plant responses to their environment. This is especially prominent concerning the adaptive tracking in reproductive phenology. For wind pollinated plants, this will substantially influence their pollen seasonality, yet there are gaps in knowledge about how environmental variation influences pollen seasonality. To investigate this, we monitored daily atmospheric pollen concentrations of seven pollen types from ecologically, economically and allergenically important plants (alder, hazel, willow, birch, pine, grass and mugwort) in twelve Norwegian locations spanning the entire country for up to 28 years. Six daily meteorological variables (maximum temperature, precipitation, wind speed, relative humidity, solar radiation and atmospheric pressure) was obtained from the MET Nordic dataset with full data cover. The pollen seasonality was then modelled using four spatial, three temporal and the six meteorological variables in a generalized linear model approach with a negative binomial distribution to investigate how each variable group thematically and individually contribute to variation in pollen seasonality. We found that the full models explained the most variation, ranging from R2 = 20.3 % to 59.5 %. The models were also highly accurate, being able to predict 54.5 % to 99.1 % of daily pollen concentrations to within 20.1 pollen grains/m3. Overall, the temporal variables were able to explain more variation than spatial and meteorological variables for most pollen types. Month, altitude and maximum temperature were the most important single variables for each category. The importance of each variable could be traced back to their individual effects of reproductive phenology, plant metabolism, species distributions and pollen release processes. We further emphasise the importance of source maps and atmospheric regional transport models in further model improvements. By understanding the relevance of environmental variation to pollen seasonality we can make better predictions regarding the consequences of climate change on plant populations.
Abstract
Europe’s Earth Observation programme for climate and environmental monitoring, Copernicus, provides ready-made thematic layers in the form of High-Resolution Layers (HRL). Examples include Water and Wetness, Small woody features, Grassland and Imperviousness. These datasets are freely available and comparable across Europe, but are they of high enough quality to be useful in national monitoring? In a collaborative project between Norway and Poland, we tested the accuracy and usefulness of these products for environmental monitoring, either alone or in combination with national data. We identified several challenges, ranging from errors in the data, difficulties finding information needed in the verification work, issues related to definitions and thresholds and the time-lag before data are available. However, the work also highlighted gaps and weaknesses in the national geographic datasets. We conclude that there is a clear need for the CLMS products. We advise caution in using the products until they have been improved but see that they have great potential for future use in environmental monitoring.
Abstract
No abstract has been registered
Abstract
1. Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce-dominated forests and can overwhelm the defences of healthy trees through pheromone-coordinated mass-attacks. 2. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management-related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. 3. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3-year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. 4. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.
Abstract
Vegetasjon langs bekker og vannveier er viktig for biologisk mangfold, jordvern, erosjonskontroll, reduksjon av risiko for flom og tørke, og for elvens hydromorfologi. Copernicus Land Monitoring Service tilbyr geografiske produkter til støtte for forvaltning av land og vann. I denne rapporten analyserer vi potensialet til Riparian Zones temakart (RZ) for bruk til kartlegging og overvåking av vegetasjon langs bekker og vannveier i Norge og Polen. Vi inkluderer også analyser av temakartet Small Woody Features (SWF) innenfor områder kartlagt i RZ. Vi sammenlignet RZ med nasjonale data og flybilder for å verifisere kvaliteten til datasettet, både for status og endringer i arealdekke og arealbruk langs bekker og vannveier. Vi konkluderer med at den tematiske nøyaktigheten var ganske god for vann, jordbruksareal og skog, men at andre klasser ikke korresponderte like godt med de nasjonale dataene. Mange av avvikene kan skyldes forskjeller i klassifiseringssystemene, kildedatene og kartleggingsinstruksene for de forskjellige datasettene. I tillegg fant vi at den romlige oppløsningen av RZ er utilstrekkelig for detaljert overvåking, særlig i jordbrukslandskap. Likevel gir RZ en standardisert og harmonisert metodikk for hele Europa, og er et steg i riktig retning for å kunne overvåke arealdekke og arealbruk i disse dynamiske og viktige områdene.
Abstract
No abstract has been registered
2023
Authors
Lars Aksel OpsahlAbstract
In Norway we now get more up-to-date maps for land resource map (AR5), because the domain experts on agriculture in the municipalities in Norway have got access to a easy to use client. This system includes a simple web browser client and a database built on Postgis Topology. In this talk we will focus on, what is it with Postgis Topology that makes it easier to build user friendly and secure tools for updating of land resource maps like AR5. We will also say a couple of words about advantages related to traceability and data security, when using Postgis Topology. In another project, where we do a lot ST_Intersection and ST_Diff on many big Simple Feature layers that covers all of Norway, we have been struggling with Topology exceptions, wrong results and performance for years. Last two years we also tested JTS OverlayNG, but we still had problems. This year we are switching to Postgis Topology and tests so far are very promising. We also take a glance on this project here in this talk. A Postgis Topology database modell has normalised the data related to borders and surfaces as opposed to Simple Feature where this is not the case. Simple Feature database modell may be compared to not using foreign keys between students and classes in a database model, but just using a standard spreadsheet model where each student name are duplicated in each class they attend. URL’s that relate this talk https://gitlab.com/nibioopensource/pgtopo_update_gui https://gitlab.com/nibioopensource/pgtopo_update_rest https://gitlab.com/nibioopensource/pgtopo_update_sql https://gitlab.com/nibioopensource/resolve-overlap-and-gap