Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Chocolate spot (CS), caused by Botrytis fabae, is one of the most destructive fungaldiseases affecting faba bean (Vicia faba L.) globally. This study evaluated 33 fababean cultivars across two locations and over 2 years to assess genetic resistance andthe effect of fungicide application on CS progression. The utility of unmanned aerialvehicle–mounted multispectral camera for disease monitoring was examined. Signif-icant variability was observed in cultivar susceptibility, with Bolivia exhibiting thehighest level of resistance and Louhi, Sampo, Vire, Merlin, Mistral, and GL Sunriseproving highly susceptible. Fungicide application significantly reduced CS severityand improved yield. Analysis of canopy spectral signatures revealed the near-infraredand red edge bands, along with enhanced vegetation index (EVI) and soil adjustedvegetation index, as most sensitive to CS infection, and they had a strong negativecorrelation with CS severity ranging from −0.51 to −0.71. In addition, EVI enabledearly disease detection in the field. Support vector machine accurately classified CSseverity into four classes (resistant, moderately resistant, moderately susceptible, andsusceptible) based on spectral data with higher accuracy after the onset of diseasecompared to later in the season (accuracy 0.75–0.90). This research underscores thevalue of integrating resistant germplasm, sound agronomic practices, and spectralmonitoring for effectively identification and managing CS disease in faba bean
Abstract
In 2024, spruce bark beetle (Ips typographus) catches decreased in all counties except Telemark, Sør-Trøndelag, and Nordland. The highest catches this year were observed in Telemark and Buskerud. In Telemark, the catches are the highest recorded since the major spruce bark beetle outbreak that started in the mid-1970s. In Buskerud, while catches have declined compared to last year, they remain historically high. In Oppland, the catches have decreased markedly from the record-breaking year of 2023 but remain at moderately high levels. Across Southern Norway, this year’s catches are slightly above the 46-year average. The relatively high catches in Buskerud and Oppland are likely a delayed response to the storm damage in November 2021, as municipalities heavily affected by the storm report especially high catches. Additionally, field reports in 2024 indicate attacks on standing trees in areas with much windfall after the 2021 storm. Many of these damage reports likely pertain to trees attacked by beetles in 2023 or earlier but that are only now showing visible symptoms. The 2024 bark beetle season was characterized by extremely dry and warm weather in May, followed by a very wet summer with normal to slightly below-average temperatures. The warm May weather coincides with the beetles' primary flight period, favoring beetle dispersal and egg-laying. Additionally, the dry conditions in May may have stressed spruce trees, reducing their resistance to beetle attacks. The wet weather later in the summer likely benefited the trees while being sub-optimal for the beetles. Overall, the weather conditions during the 2024 season were probably relatively favorable for the beetles. A temperature-based development model estimate that, by September 17, the spruce bark beetle could have completed two generations near the Oslofjord, along the southern coastline, and in low-lying inland valleys. However, these model results do not necessarily mean that the beetles completed two generations in 2024 but indicate that conditions were warm enough to make it possible.
Authors
H. Heinemann F. Durand-Maniclas F. Seidel F. Ciulla Teresa Gómez de la Bárcena M. Camenzind S. Corrado Z. Csűrös Zs. Czakó D. Eylenbosch Andrea Ficke C. Flamm J.M. Herrera V. Horáková A. Hund F. Lüddeke F. Platz B. Poós Daniel Rasse Silva-Lopes da Silva-Lopes M. Toleikiene A. Veršulienė M. Visse-Mansiaux K. Yu J. Hirte A. DonAbstract
No abstract has been registered
Authors
Daniel Flø Johan A. Stenberg Lawrence Richard Kirkendall Anders Nielsen Selamawit Tekle Gobena Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken Iben Magrete Thomsen May-Guri Sæthre Sandra A.I. WrightAbstract
It is highly unlikely that Anagyrus vladimiri will be able to establish or spread in Norway. There are no native host organisms, and winter temperatures are too low. Therefore, it is likely that the parasitic wasp will not affect local biodiversity. Thus concludes the Norwegian Scientific Committee for Food and Environment (VKM). Background VKM has assessed the environmental risk of using the product Citripar in Norway. The risk assessment was carried out at the request of the Norwegian Food Safety Authority. Citripar, a product for biological control, is being sought for approval for use in Norway. The product contains the parasitic wasp Anagyrus vladimiri and is intended to be used against mealybugs, especially the species Planococcus citri and P. ficus, on fruits, berries, vegetables, and herbs in greenhouses and plastic tunnels, as well as on indoor plants. Conclusions There have been no reported observations of Anagyrus vladimiri in Norway. VKM assesses that Anagyrus vladimiri will not be able to establish and spread in Norway under current conditions. Anagyrus vladimiri will have no effect on biological diversity in Norway, as there are no known native host organisms that the wasp can parasitize. Individuals of what is now known as Anagyrus vladimiri were for many years identified as belonging to the species Anagyrus pseudococci. Anagyrus pseudococci and A. vladimiri belong to a complex of species that are almost impossible to distinguish from each other and are informally referred to as the Anagyrus pseudococci complex. The risk assessment is approved by VKM's Panel on Plant Health.
2024
Abstract
No abstract has been registered
Authors
Ari Hietala Wilson Lara Henao André Kolsgaard Simon Seljegard Nina Elisabeth Nagy Isabella Børja Tor Arne Justad Yngve Rekdal Even Bergseng Halvor SolheimAbstract
Forest grazing by free-roaming livestock is a common practice in many countries. The forestry sector sees the practice as unfortunate owing to several reasons, such as damages inflicted by grazing in young plantations. Concerning Norway spruce forests, a tree species known to develop wood decay with high frequency followed from stem bark damage, there is a strong perception among foresters that the trampling damage caused by livestock on the superficial root system of this tree leads to decay. Because of the very limited scientific documentation available on this topic, we pursued a clarification by investigating three 38- to 56-year-old Norway spruce forests used for silvopasture. Two types of injuries were observed on exposed roots: bark cracks characterized by resin exudation, and injuries involving localized bark peeling and exposure of the underlying wood. These injuries occurred up to 250 cm away from the root collar, with the sector 50–150 cm away from the root collar showing the highest incidence of injuries. In two of the forest stands, wood within the injured root areas was primarily colonized by the wound parasite Corinectria fuckeliana or species of the order Helotiales, fungi that do not cause wood decay. Wood colonization of injured roots by Heterobasidion species, the most frequent wood decay fungi of Norway spruce, was common in the third stand, but only in a few cases it was possible to deduce that the colonization had probably initiated via trampling injuries on roots. In a few cases, an injury was located at stem base at the root collar height along paths used by animals, and in such cases, it was obvious that stem colonization by Heterobasidion species had initiated via the wound. The relatively small amount of data warrants caution when drawing conclusions. Considering the high establishment frequency of decay via stem bark wounds of Norway spruce observed in previous studies, our data would suggest that roots are generally better equipped to defend themselves upon infliction of superficial wounds than stem of this tree species. The likelihood of trampling injuries leading to decay may vary considerably between different stands, this presumably depending on the level of local propagule pressure by pathogenic wood decay fungi and the frequency of damages close to root collar.
Authors
Jorunn Børve Theresa Weigl Emily Follett Ingunn Øvsthus Hanne Larsen Torbjørn Haukås Erlend Indergård Siv Fagertun Remberg Dalphy Ondine Camira Harteveld Arne StensvandAbstract
No abstract has been registered
Abstract
No abstract has been registered