Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Retail food environment is increasingly considered in relation to obesity. This study investigates the impacts of access to supermarkets, the primary source of healthy foods in the United States, on the bodyweight of children. Empirical analysis uses individual-level panel data covering health screenings of public schoolchildren from Arkansas with annual georeferenced business lists, and utilizes the variations of supermarket openings and closings. There is little overall impact in either case. However, supermarket openings are found to reduce the BMI z-scores of low-income children by 0.090 to 0.096 standard deviations. Such impact remains in a variety of robustness exercises. Therefore, improvement in healthy food access could at least help reduce childhood obesity rates among certain population groups.

To document

Abstract

To meet increasing demand for animal protein, swine have been raised in large Chinese farms widely, using antibiotics as growth promoter. However, improper use of antibiotics has caused serious environmental and health risks, in particular Antimicrobial resistance (AMR). This paper reviews the consumption of antibiotics in swine production as well as AMR and the development of novel antibiotics or alternatives in China. The estimated application of antibiotics in animal production in China accounted for about 84240 tons in 2013. Overuse and abuse of antibiotics pose a great health risk to people through food-borne antibiotic residues and selection for antibiotic resistance. China unveiled a national plan to tackle antibiotic resistance in August 2016, but more support is needed for the development of new antibiotics or alternatives like plant extracts. Antibiotic resistance has been a major global challenge, so international collaboration between China and Europe is needed.

To document

Abstract

The recalcitrance bottleneck of lignocellulosic materials presents a major challenge for biorefineries, including second-generation biofuel production. Because of their abundance in the northern hemisphere, softwoods, such as Norway spruce, are of major interest as a potential feedstock for biorefineries. In nature, softwoods are primarily degraded by basidiomycetous fungi causing brown rot. These fungi employ a non-enzymatic oxidative system to depolymerize wood cell wall components prior to depolymerization by a limited set of hydrolytic and oxidative enzymes. Here, it is shown that Norway spruce pretreated with two species of brown-rot fungi yielded more than 250% increase in glucose release when treated with a commercial enzyme cocktail and that there is a good correlation between mass loss and the degree of digestibility. A series of experiments was performed aimed at mimicking the brown-rot pretreatment, using a modified version of the Fenton reaction. A small increase in digestibility after pretreatment was shown where the aim was to generate reactive oxygen species within the wood cell wall matrix. Further experiments were performed to assess the possibility of performing pretreatment and saccharification in a single system, and the results indicated the need for a complete separation of oxidative pretreatment and saccharification. A more severe pretreatment was also completed, which interestingly did not yield a more digestible material. It was concluded that a biomimicking approach to pretreatment of softwoods using brown-rot fungal mechanisms is possible, but that there are additional factors of the system that need to be known and optimized before serious advances can be made to compete with already existing pretreatment methods.

To document

Abstract

When exposed to moisture, wood undergoes swelling and is susceptible to fungal degradation. Chemical modification via oligomeric lactic acid (OLA) treatment has been found to be a promising environmentally friendly solution to this disadvantage. In this study, wood was impregnated with OLA and then variously heat treated to polymerize the OLA in situ. The effect of curing temperature and time on OLA polymerization has been determined chemically. Dimensional stability was examined by water immersion and hygroscopicity measurements and biological decay resistance also evaluated. OLA impregnation followed by heat treatment enhanced wood properties. OLA cure at 160 °C for 48 h resulted in treated wood with greater dimensional stability and biological resistance.