Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Docks (Rumex spp.) are a considerable problem in grassland production worldwide. We investigated how different cultural management techniques affected dock populations during grassland renewal: (I) renewal time, (II) companion crop, (III) false seedbed, (IV) taproot cutting (V), plough skimmer and (VI) ploughing depth. Three factorial split-split plot experiments were carried out in Norway in 2007–2008 (three locations), 2008–2009 (one location) and 2009 (one location). After grassland renewal, more dock plants emerged from seeds than from roots. Summer renewal resulted in more dock seed and root plants than spring renewal. Adding a spring barley companion crop to the grassland crop often reduced dock density and biomass. A false seedbed resulted in 71% fewer dock seed plants following summer renewal, but tended to increase the number of dock plants after spring renewal. In some instances, taproot cutting resulted in less dock biomass, but the effect was weak and inconsistent, and if ploughing was shallow (16 cm) or omitted, it instead increased dock root plant emergence. Fewer root plants emerged after deep ploughing (24 cm) compared to shallow ploughing, and a plough skimmer tended to reduce the number further. We conclude that a competitive companion crop can assist in controlling both dock seed and root plants, but it is more important that the renewal time is favourable to the main crop. Taproot cutting in conjunction with ploughing is not an effective way to reduce dock root plants, but ploughing is more effective if it is deep and a skimmer is used.

To document

Abstract

Several studies have shown the positive effect of nitrogen fertilization on conifer growth. In young Norway spruce (Picea abies) stands, an additional effect of including a mixture of other nutrients has often, but not always, been found. We studied effects of repeated fertilization in 28 stands with young Norway spruce in central Norway. The treatments consisted of plots without nutrient addition (Control), fertilization with 150 kg N ha−1 (150 N), and fertilization with 150 kg N plus addition of P, K, Mg, B, Mn and Cu (150 N + mix), repeated three times with approximately eight years interval. There was a clear positive effect on volume increment of the 150 N and 150 N + mix treatments compared to Control, and the effect was significantly higher for 150 N + mix than for 150 N. Fertilization had a stronger effect in the first fertilization period than in the second, while the third period was intermediate. The effect of 150 N + mix was strongest at plots > 300 m a.s.l. However, this correlation may be due to geological conditions rather than elevation. Further studies are needed to find out under which edaphic conditions a nutrient mixture will increase growth substantially in young spruce stands.

To document

Abstract

Purpose Treelines and forest lines (TFLs) have received growing interest in recent decades, due to their potential role as indicators of climate change. However, the understanding of TFL dynamics is challenged by the complex interactions of factors that control TFLs. The review aims to provide an overview over the trends in the elevational dynamics of TFLs in Norway since the beginning of the 20th century, to identify main challenges to explain temporal and spatial patterns in TFL dynamics, and to identify important domains for future research. Method A systematic search was performed using international and Norwegian search engines for peer-reviewed articles, scientific reports, and MA and PhD theses concerning TFL changes. Results Most articles indicate TFL rise, but with high variability. Single factors that have an impact on TFL dynamics are well understood, but knowledge gaps exist with regard to interactions and feedbacks, especially those leading to distributional time lags. Extracting the most relevant factors for TFL changes, especially with regard to climate versus land-use changes, requires more research. Conclusions Existing data on TFL dynamics provide a broad overview of past and current changes, but estimations of reliable TFL changes for Norway as a whole is impossible. The main challenges in future empirically-based predictions of TFLs are to understand causes of time lags, separate effects of contemporary processes, and make progress on the impacts of feedback and interactions. Remapping needs to be continued, but combined with both the establishment of representative TFL monitoring sites and field experiments.

To document

Abstract

This paper addresses the endogeneity of inputs and output (which is mostly ignored in the stochastic frontier (SF) literature) in the SF panel data model under the behavioural assumption that firms maximize returns to the outlay. We consider a four component SF panel data model in which the four components are: firms' latent heterogeneity, persistent inefficiency, transient inefficiency and random shocks. Second, we include determinants in transient inefficiency. Finally, to avoid the impact of distributional assumptions in estimating the technology parameters, we apply a multi-step estimation strategy to an unbalanced panel dataset from Norwegian crop-producing farms observed from 1993 to 2014. Distributional assumptions are made in second and third steps to predict both persistent and transient inefficiency, and their marginal effects. Keywords Efficiency; Endogeneity; Returns to the outlay; Panel data