Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants.We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.

To document

Abstract

Surface mould growth contributes to the colour changes of outdoor exposed wood over time. Modelling mould growth can thus help visualize wooden facades’ colour development, which can improve facade design and service life. However, existing wood mould models do not consider transient wetting effects that occur outdoors due to precipitation and condensation. To address this, four mould models were evaluated using laboratory experimental data that included exposure to transient wetting. First, the models (the original and the updated VTT model, the biohygrothermal model and the mould resistance design (MRD) model) were evaluated for Scots pine sapwood. For this evaluation, the transient wetting effect was implemented in the models by using hourly wood surface relative humidity (RH), calculated from electrical resistance measurements, as input. This showed that the original and the updated VTT model gave best fit to the experimental data. However, further evaluation of these two models for more wood materials showed that the updated VTT model was sensitive to the choice of material parameters. Large discrepancies occurred when varying the material parameters in the updated VTT model. Finally, different estimates of RH were tested in the original VTT model. Using wood surface RH as input gave best fit to the experimental data, and ambient air RH gave poorest fit. Overall, the results indicate that the original VTT model is fairly reliable and can be used to predict mould growth on wooden claddings exposed to transient wetting as long as the wood surface climate is used as climatic input data.

To document

Abstract

This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the ensemble mean (EM). The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.

To document

Abstract

The present work studied the effect of the year of harvest, the genotype and the cultivation method on the nutritional quality and the allergen content of three plum cultivars. The common quality parameters and the phytochemical content strongly varied with the year and the cultivar, while the system of cultivation had a minor influence. In particular, ascorbic acid greatly decreased in 2016 compared to 2015, while polyphenols were higher in 2016. The health-promoting compounds, and particularly phenolics, were significantly correlated with the antioxidant capacity. Finally, the allergen content was strongly dependent on the content of flavan-3-ols, suggesting that this class of phenolics is determinant in influencing the allergen content in plums. Results showed that the major factor affecting the quality and the concentration of natural metabolites of plum, in addition to the diversity among genotypes, is the year-to-year variation, whereas the system of cultivation plays a marginal role.