Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2019
Sammendrag
Knowledge about spatiotemporal variability of climate change effect on tree-ring width (TRW) and crown condition is essential to optimize the modelling of future forest ecosystem responses to the changing climate. Geographical differences in the climate–growth relationship are a reflection of the regional climatic conditions mainly. In this study, 175 Picea abies trees from the north-western edge of its geographical distribution in Central Norway were evaluated with respect to geographical and age-dependent differences during the common period of 1950–2015. The results showed that the most significant positive correlations between TRW and the current June temperature were unstable although the temperature increased. The correlations suddenly started to decrease (regardless of the site placement and tree age) at the beginning of the 1990s, but subsequently unexpectedly increased in the 2010s. The superposed epoch analysis revealed longer TRW regeneration of the southern plots (except over-mature trees) after negative pointer years compared to the northern plots. Previous summer temperature and related physiological processes (cone crops, storage of nutrients, etc.) significantly negatively affected P. abies growth in the current year. Additionally, our results showed that the selection of the chronology version (standard or residual) significantly affects the resulting correlations and thus must be carefully considered in dendroclimatological studies. Our main outputs can contribute to better understanding of the climate–growth relationship variability and general prediction of the radial growth.
Forfattere
Therese With BergeSammendrag
No abstract has been registered
Forfattere
Therese W. BergeSammendrag
No abstract has been registered
Forfattere
Merike Sõmera Anders Kvarnheden Cécile Desbiez Dag-Ragnar Blystad Pille Sooväli Jiban Kumar Kundu Mark Gantsovski Jim Nygren Hervé Lecoq Eric Verdin Carl Jonas Jorge Spetz Lucie Tamisier Erkki Truve Sebastien MassartSammendrag
High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.
Forfattere
David S. Bullock Klaus Mittenzwei Timothy E. JoslingSammendrag
We present a game-theoretical model arguing that greater public transparency does not necessarily lead to higher social welfare. Political agents can benefit from providing citizens with misleading information aimed at aligning citizens’ choices with the political agents’ preferences. Citizens can lose from being fooled by political agents, though they can mitigate their losses by conducting costly inspections to detect false information. Producing and detecting false information is costly and can reduce social welfare.
Forfattere
Till SeehusenSammendrag
No abstract has been registered
Sammendrag
The objective of this study was to evaluate the effect of wheeling with two different wheel loads (1.7 and 2.8 Mg) and contrasting wheeling intensities (1x and 10x) on the bearing capacity of a Stagnosol derived from silty alluvial deposits. Soil strength was assessed by laboratory measurements of the precompression stress in topsoil (20 cm) and subsoil (40 and 60 cm) samples. Stress propagation, as well as elastic and plastic deformation during wheeling were measured in the field with combined stress state (SST) and displacement transducers (DTS). We also present results from soil physical analyses (bulk density, air capacity, saturated hydraulic conductivity) and barley yields from the first two years after the compaction. Although the wheel loads used were comparatively small, typical for the machinery used in Norway, the results show that both increased wheel load and wheeling intensity had negative effects on soil physical parameters especially in the topsoil but with similar tendencies also in the subsoil. Stress propagation was detected down to 60 cm depth (SST). The first wheeling was most harmful, but all wheelings led to accumulative plastic soil deformation (DTS). Under the workable conditions in this trial, increased wheeling with a small machine was more harmful to soil structure than a single wheeling with a heavier machine. However, the yields in the first two years after the compaction did not show any negative effect of the compaction.
Forfattere
Csilla FarkasSammendrag
Soil moisture is an important but often undervalued element of the water cycle. Compared to other components, the volume of soil moisture is small; nonetheless, it is of fundamental importance to many hydrological, biological and biogeochemical processes. Through processes like evaporation and plant transpiration, soil moisture is a key variable in controlling the water and energy exchange between the land surface and the atmosphere, hence, it plays an important role in the development of weather patterns and the precipitation formation. It also strongly effects surface and subsurface runoff, soil erosion, food production, greenhouse gas emission, the buffer capacity of the soil, the soil biota and many other processes and sectors. It is deducable today that short-sighted mismanagement of soil or soil water strongly contributed to the collapse of large, powerful historic civilazations. Soil degradation is a global problem that is of strong concern for European countries as well. Yet, while much focus is given to open surface water recources - the EU Water Framework Directive is in place since 2000 - the Soil Framework Directive is still to be adopted. It is important to improve the global understanding of the importance of soil as a natural resource, and its hydraulic functioning, including its global change context. The presentation aims at taking a deeper insight into the “butterfly effect” of soil status and moisture dynamics by highlighting how small-scale management decisions and processes might influences large-scale processes and our life.
Forfattere
Mehmet Senbayram Alice Budai Roland Bol David Chadwick Laszlo Marton Recep Gündogan Di WuSammendrag
Liming of acidic soils has been suggested as a strategy to enhance N2O reduction to N2 during heterotrophic denitrification, and mitigate N2O emission from N fertilised soils. However, the mechanisms involved and possible interactions of key soil parameters (NO3− and O2) still need to be clarified. To explore to what extent soil pH controls N2O emissions and the associated N2O/(N2O + N2) product ratio in an acidic sandy soil, we set-up three sequential incubation experiments using an unlimed control (pH 4.1) and a limed soil (pH 6.9) collected from a 50-year liming experiment. Interactions between different NO3− concentrations, N forms (ammonium- and nitrate) and oxygen levels (oxic and anoxic) on the liming effect of N2O emission and reduction were tested in these two sandy soils via direct N2 and N2O measurements. Our results showed 50-year liming caused a significant increase in denitrification and soil respiration rate of the acidic sandy soil. High concentrations of NO3− in soil (>10 mM N in soil solution, equivalent to 44.9 mg N kg−1 soil) almost completely inhibited N2O reduction to N2 (>90%) regardless of the soil pH value. With decreasing NO3− application rate, N2O reduction rate increased in both soils with the effect being more pronounced in the limed soil. Complete N2O reduction to N2 in the low pH sandy soil was also observed when soil NO3− concentration decreased below 0.2 mM NO3−. Furthermore, liming evidently increased both N2O emissions and the N2O/(N2+N2O) product ratio under oxic conditions when supplied with ammonium-based fertiliser, possibly due to the coupled impact of stimulated nitrification and denitrification. Overall, our data suggest that long-term liming has the potential to both increase and decrease N2O emissions, depending on the soil NO3− level, with high soil NO3− levels overriding the assumed direct pH effect on N2O/(N2+N2O) product ratio.
Forfattere
Jürgen Dengler Thomas J. Matthews Manuel J. Steinbauer Sebastian Wolfrum Steffen Boch Alessandro Chiarucci Timo Conradi Iwona Dembicz Corrado Marcenó Itziar García-Mijangos Arkadiusz Nowak David Storch Werner Ulrich Juan Antonio Campos Laura Cancellieri Marta Carboni Giampiero Ciaschetti Pieter De Frenne Jiří Doležal Christian Dolnik Franz Essl Edy Fantinato Goffredo Filibeck John-Arvid Grytnes Riccardo Guarino Behlül Güler Monika Janišová Ewelina Klichowska Łukasz Kozub Anna Kuzemko Michael Manthey Anne Mimet Alireza Naqinezhad Christian Pedersen Robert K. Peet Vincent Pellissier Remigiusz Pielech Giovanna Potenza Leonardo Rosati Massimo Terzi Orsolya Valkó Denys Vynokurov Hannah White Manuela Winkler Idoia BiurrunSammendrag
Aim Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non‐forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.