Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Authors
Jari Hynynen Narayanan Subramanian Clara Antón Fernandéz Soili Haikarainen Emma Holmström Micky Allen Saija Huuskonen Jouni Siipilehto Hannu Salminen Mika Lehtonen Kjell Andreassen Urban NilssonAbstract
No abstract has been registered
Authors
Andreas Hagenbo Lise Dalsgaard Marius Hauglin Stephanie Eisner Line Tau Strand O. Janne KjønaasAbstract
Boreal forest soils are a critical terrestrial carbon (C) reservoir, with soil organic carbon (SOC) stocks playing a key role in global C cycling. In this study, we generated high-resolution (16 m) spatial predictions of SOC stocks in Norwegian forests for three depth intervals: (1) soil surface down to 100 cm depth, (2) forest floor (LFH layer), and (3) 0–30 cm into the mineral soil. Our predictions were based on legacy soil data collected between 1988 and 1992 from a subset (n = 1014) of National Forest Inventory plots. We used boosted regression tree models to generate SOC estimates, incorporating environmental predictors such as land cover, site moisture, climate, and remote sensing data. Based on the resulting maps, we estimate total SOC stocks of 1.57–1.87 Pg C down to 100 cm, with 0.55–0.66 Pg C stored in the LFH layer and 0.68–0.80 Pg C in the upper mineral soil. These correspond to average SOC densities of 15.3, 5.4, and 6.6 kg C m−2, respectively. We compared the predictive performance of these models with another set, supplemented by soil chemistry variables. These models showed higher predictive performance (R2 = 0.65–0.71) than those used for mapping (R2 = 0.44–0.58), suggesting that the mapping models did not fully capture environmental variability influencing SOC stock distributions. Within the spatial predictive models, Sentinel-2 Normalized Difference Vegetation Index, depth to water table, and slope contributed strongly, while soil nitrogen and manganese concentrations had major roles in models incorporating soil chemistry. Prediction uncertainties were related to soil depth, soil types, and geographical regions, and we compared the spatial prediction against external SOC data. The generated maps of this offer a valuable starting point for identifying forest areas in Norway where SOC may be vulnerable to climate warming and management-related disturbances, with implications for soil CO2 emissions.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Many countries have goals to reduce soil sealing of agricultural land to preserve food production capacity. To monitor progress, reliable data are needed to quantify soil sealing and changes over time. We examined the potential of the Imperviousness Classified Change (IMCC) 2015–2018 product provided by the Copernicus Land Monitoring Service (CLMS) to assess soil sealing in agricultural areas in Poland and Norway. We found very high overall accuracy due to the dominance of the area with no change. When we focused on areas classified as change, we found low user accuracy, with over-estimation of soil sealing. The producer accuracy was generally much higher, meaning that real cases of soil sealing were captured. This is better than under-estimation of soil sealing because it highlights areas where sealing may have occurred, allowing the user to carry out further control of this much smaller area, without having to assess the great expanse of unchanged area. We concluded that the datasets provide useful information for Europe. They are standardized and comparable across countries, which can enable comparison of the effects of policies intended to prevent soil sealing. Some distinctions between classes are not reliable, but the general information about increase or decrease is useful.
Abstract
No abstract has been registered
Authors
Vilde Lytskjold Haukenes Johan Asplund Line Nybakken Jørund Rolstad Ken Olaf Storaunet Mikael OhlsonAbstract
A key property of the boreal forest is that it stores huge amounts of carbon (C), especially belowground in the soil. Amounts of C stored in the uppermost organic layer of boreal forest soils vary greatly in space due to an interplay between several variables facilitating or preventing C accumulation. In this study, we split C stocks into the organic layer and charcoal C due to their difference in origin, stability, and ecological properties. We compared organic layer C and charcoal C stocks in two regions of south-central Norway (Trillemarka and Varaldskogen), characterized by Scots pine and Norway spruce forests with varying fire histories. We used structural equation modeling to investigate how vegetation composition, hydrotopography, and soil properties interplay to shape organic layer C and charcoal C stocks. Pine forests consistently contained larger organic layer C stocks than spruce forests. Charcoal stocks, in contrast, were less consistent across both forest types and study regions as pine forests had higher charcoal C stocks than spruce forests in Trillemarka, while the two forest types contained equal charcoal C stocks in Varaldskogen. Charcoal and soil organic layer C stocks increased with higher fire frequencies (number of fire events over the last 600 years), but not with a shorter time since last fire (TSF). Additionally, vegetation composition, terrain slope, and soil moisture were the most important drivers of the organic layer C stocks, while charcoal C stocks were mainly controlled by the depth of the organic layer. Also, microtopography was of importance for organic layer C and charcoal C, since depressions in the forest floor had more charcoal C than well-drained minor hills.
Authors
Pia Heltoft ThomsenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Samuel L. Zelinka Samuel V. Glass Natalia Farkas Emil E. Thybring Michael Altgen Lauri Rautkari Simon Curling Jinzhen Cao Yujiao Wang Tina Künniger Gustav Nyström Christopher Hubert Dreimol Ingo Burgert Mark G. Roper Darren P. Broom Matthew Schwarzkopf Arief Yudhanto Mohammad Subah Gilles Lubineau Maria Fredriksson Wiesław Olek Jerzy Majka Nanna Bjerregaard Pedersen Daniel J. Burnett Armando R. Garcia Frieder Dreisbach Louis Waguespack Jennifer Schott Luis G. Esteban Alberto García‑Iruela Thibaut Colinart Romain Rémond Brahim Mazian Patrick Perré Lukas EmmerichAbstract
No abstract has been registered