Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2020
Abstract
The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.
Authors
Ievina SturiteAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Because of generally small log piles, loading forwarders during thinning is time consuming. The Assortment Grapple, an innovative grapple with an extra pair of claws which facilitates the handling of two assortments during one loading crane cycle, has been designed to decrease forwarders’ loading time consumption. A standardized experiment was performed in a virtual thinning stand using a machine simulator with the objectives to form guidelines for working with the Assortment Grapple and to analyse its development potential. Four experienced operators participated in the study. According to the results, the Assortment Grapple’s accumulating function is beneficial only when there are no remaining trees between piles loaded during the same crane cycle. In such cases, none of participating operators lost time, and 3 of 4 operators saved time notably. The problem with the remaining trees is the extra time required to steer the crane tip around them. Therefore, a harvester should place those log piles that are later to be forwarded together in the same space with no remaining trees between the piles. Furthermore, we recommend that the Assortment Grapple’s usability will be improved by adding an own rocker switch on the forwarder’s controls to command the extra claws.
Abstract
No abstract has been registered
Authors
Aurita Butkeviciute Mindaugas Liaudanskas Darius Kviklys Dalia Gelvonauskiene Valdimaras JanulisAbstract
No abstract has been registered
Authors
Mindaugas Liaudanskas Rugile Okuleviciute Juozas Lanauskas Darius Kviklys Kristina Zymone Tamara Rendyuk Vaidotas Žvikas Nobertas Uselis Valdimaras JanulisAbstract
No abstract has been registered
Authors
Nobertas Uselis Jonas Viškelis Juozas Lanauskas Mindaugas Liaudanskas Valdimaras Janulis Darius KviklysAbstract
No abstract has been registered
Authors
Hugo Moreno Victor Rueda-Ayala Angela Ribeiro Jose Bengochea-Guevara Juan López Gerassimos Peteinatos Constantino Valero Dionisio AndújarAbstract
No abstract has been registered
Abstract
The aim of this work was to calculate farm specific LCAs for milk-production on 200 dairy farms in Central Norway, where 185 farmed conventional and 15 according to organic standards. We assume that there are variations in environmental emission drivers between farms and therefore also variation in indicators. We think that information can be utilized to find management improvements on individual farms. Farm specific data on inputs and production for the calendar years 2014 to 2016 were used. The LCAs were calculated for purchased products and on farm-emissions, including atmospheric deposition, biological nitrogen fixation, use of fertilizer and manure. The enteric methane emission from digestion was calculated for different animal groups. The functional unit was one kg energy- corrected milk (ECM) delivered at farm-gate. For the 200 dairy farms there were huge variations of farm characteristics, environmental per- formance and economic outcome. On average, the organic farms produced milk with a lower carbon footprint (1.2 kg CO2 eq./kg ECM) than the conventional ones (1.4 kg CO2 eq./kg ECM). The organic farms had also a lower energy intensity (3.1 MJ/kg ECM) and nitrogen intensity (5.0 kg N/kg N) than their conventional colleagues (4.1 MJ/kg ECM and 6.9 kg N/kg N respectively). The contribution margin was better on the organic farms with 6.6 NOK/kg ECM compared to the conventional with 5.9 NOK/kg ECM. The average levels of the environmental indicators were comparable but slightly higher than findings in other international studies. The current study proved that the FARMnor model allows to calculate LCAs for large number of individual farms. The results show that the environmental performance and economic outcome vary between farms. We recommend that farm specific LCA-results are used to unveil what needs to be changed for improving a farm’s environmental performance.