Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Copyright © 2021 Athanasiadou, Almvik, Hellström, Madland, Simic and Steinshamn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Abstract

The production, diversity and use of engineered nanomaterials (ENMs) increases globally as the market and number of applications for ENM expands. Silver (Ag), zinc (Zn) and titanium dioxide (TiO2) ENMs are among the most widely used in industrial processes and consumer products leading to increased releases to wastewater treatment plants (WWTP) from domestic and industrial sources. Material flow analyses suggest that landfills or agricultural soils and sediments are the main receiving compartments for ENM, depending on the application and ENM type. However, knowledge on the fate and transformation of ENMs in WWTP biosolids following their use as fertilizer on agricultural land, their impacts on soil and sediment ecosystems released through run-off after land-application are only poorly understood. ENTRANS aims to improve the understanding of the behavior and physicochemical transformation processes impacting ENM in different environmental media (wastewater, biosolids, soil, sediment) and how this transformation influences ENM bioavailability, bioaccumulation and toxicity in organisms from receiving environments considered to be the final sinks for ENMs, soil and sediments. The ENTRANS project will follow and characterize the physicochemical transformation of ENMs in WWTP and environmental compartments. Using isotopically labelled Ag, Zn and TiO2 ENMs, the transformation and further impact of these particles, including bioavailability, bioaccumulation, biodistribution and toxicity, will be tracked and studied using relevant in vitro and in vivo models to provide a better understanding of the link between transformation, uptake and observed toxicity. Existing guidelines will be improved to incorporate environmentally relevant exposures and toxicity endpoints of regulatory relevance and novel bioassays will be developed focusing on immune and stress responses. The transformation processes, exposure and uptake, biodistribution and toxicity data will be carefully generated so that the obtained results can be integrated into computational fate and exposure models and a risk assessment can be performed.

Abstract

Understanding the quality of new raw material sources will be of great importance to ensure the development of a circular bioeconomy. Building up quality understanding of wood waste is an important step in this development. In this paper we probe two main questions, one substantial and one theoretical: What different understandings of wood waste quality exist and what significance do they have for the recycling and re-use of this waste fraction? And, what is the evolution of knowledge and sustainable practices of wood waste qualities a case of? The analysis is based on diverse perspectives and forms of methods and empirical material. Studies of policy documents, regulations, standards, etc. have been reviewed to uncover what kind of measures and concepts that have been important for governing and regulating wood waste handling. Interviews concerning wood and wood waste qualities have been conducted with key informants and people visiting recycling and waste management stations in Oslo and Akershus in Norway. By studying quality conceptions through the social birth, production, life, end-of-life and re-birth of wood products, we analyse socio-cultural conditions for sustainability. Furthermore we show how the evolution of knowledge and sustainable practices of wood waste qualities, in the meeting with standards and regulations, is a case of adaptation work in the evolution of Norwegian bioeconomy.