Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The Norwegian Scientific Committee for Food and Environment (VKM) initiated this work to examine the extent to which organisms developed by genome-editing technologies pose new challenges in terms of risk assessment. This report considers whether the risk assessment guidance on genetically modified organisms, developed by the European Food Safety Authority (EFSA), can be applied to evaluate potential risks of organisms developed by genome editing. Background Gene technology has allowed for the transfer of genes between organisms and species, and thereby to design altered genotypes with novel traits, i.e. GMOs. A new paradigm started in the early 2000s with the development of genome-editing techniques. Unlike traditional genetic modification techniques resulting in insertion of foreign DNA fragments at random locations in the genome, the new genome-editing techniques additionally open for a few single nucleotide edits or short insertions/deletions at a targeted site in an organism’s genome. These new techniques can be applied to most types of organisms, including plants, animals and microorganisms of commercial interest. An important question is how the novel, genome-edited organisms should be evaluated with respect to risks to health and the environment. The European Court of Justice decided in 2018 to include genome-edited organisms in the GMO definition and hence in the regulatory system already in place. This implies that all products developed by genome-editing techniques must be risk-assessed within the existing regulatory framework for GMOs. The European and Norwegian regulatory frameworks regulate the production, import and placing on the market of food and feed containing, consisting of or produced from GMOs, as well as the release of GMOs into the environment. The assessment draws on guidance documents originally developed by EFSA for risk assessment of GMOs, which were drawn up mainly to address risks regarding insertion of transgenes. The new genome-editing techniques, however, provide a new continuum of organisms ranging from those only containing a minor genetic alteration to organisms containing insertion or deletion of larger genomic regions. Risk assessment of organisms developed by genome editing The present discourse on how new genome-editing techniques should be regulated lacks an analysis of whether risk assessment methodologies for GMOs are adequate for risk assessment of organisms developed through the use of the new genome-editing techniques. Therefore, this report describes the use of genome-editing techniques in food and feed production and discusses challenges in risk assessment with the regulatory framework. Specifically, this report poses the question as to whether the EFSA guidance documents are sufficient for evaluating risks to health and environment posed by genome-edited plants, animals and microorganisms. To address these questions, the report makes use of case examples relevant for Norway. These examples, intended for food and feed, include oilseed rape with a modified fatty acid profile, herbicide-tolerant and pest-resistant crops, sterile salmon, virus-resistant pigs and hornless cattle. The report considers all aspects of the stepwise approach as described in the EFSA guidance documents. Conclusions The inherent flexibility of the EFSA guidance makes it suitable to cover health and environmental risk assessments of a wide range of organisms with various traits and intended uses. Combined with the embedded case-by-case approach the guidance is applicable to genome-edited organisms. The evaluation of the guidance demonstrates that the parts of the health and environmental risk assessment concerned with novel traits (i.e. the phenotype of the organism) may be fully applied to all categories of genome-edited organisms. ............

To document

Abstract

Hymenoptera is a hyperdiverse insect order represented by over 153,000 different species. As many hymenopteran species perform various crucial roles for our environments, such as pollination, herbivory, and parasitism, they are of high economic and ecological importance. There are 99 hymenopteran genomes in the NCBI database, yet only five are representative of the paraphyletic suborder Symphyta (sawflies, woodwasps, and horntails), while the rest represent the suborder Apocrita (bees, wasps, and ants). Here, using a combination of 10X Genomics linked-read sequencing, Oxford Nanopore long-read technology, and Illumina short-read data, we assembled the genomes of two willow-galling sawflies (Hymenoptera: Tenthredinidae: Nematinae: Euurina): the bud-galling species Euura lappo and the leaf-galling species Eupontania aestiva. The final assembly for E. lappo is 259.85 Mbp in size, with a contig N50 of 209.0 kbp and a BUSCO score of 93.5%. The E. aestiva genome is 222.23 Mbp in size, with a contig N50 of 49.7 kbp and a 90.2% complete BUSCO score. De novo annotation of repetitive elements showed that 27.45% of the genome was composed of repetitive elements in E. lappo and 16.89% in E. aestiva, which is a marked increase compared to previously published hymenopteran genomes. The genomes presented here provide a resource for inferring phylogenetic relationships among basal hymenopterans, comparative studies on host-related genomic adaptation in plant-feeding insects, and research on the mechanisms of plant manipulation by gall-inducing insects.

To document

Abstract

The genus Metarhizium is composed of species used in biological control programs of agricultural pests worldwide. This genus includes common fungal pathogen of many insects and mites and endophytes that can increase plant growth. Metarhizium humberi was recently described as a new species. This species is highly virulent against some insect pests and promotes growth in sugarcane, strawberry, and soybean crops. In this study, we sequenced the genome of M. humberi, isolate ESALQ1638, and performed a functional analysis to determine its genomic signatures and highlight the genes and biological processes associated with its lifestyle. The genome annotation predicted 10633 genes in M. humberi, of which 92.0% are assigned putative functions, and ∼17% of the genome was annotated as repetitive sequences. We found that 18.5% of the M. humberi genome is similar to experimentally validated proteins associated with pathogen–host interaction. Compared to the genomes of eight Metarhizium species, the M. humberi ESALQ1638 genome revealed some unique traits that stood out, e.g., more genes functionally annotated as polyketide synthases (PKSs), overrepresended GO-terms associated to transport of ions, organic and amino acid, a higher percentage of repetitive elements, and higher levels of RIP-induced point mutations. The M. humberi genome will serve as a resource for promoting studies on genome structure and evolution that can contribute to research on biological control and plant biostimulation. Thus, the genomic data supported the broad host range of this species within the generalist PARB clade and suggested that M. humberi ESALQ1638 might be particularly good at producing secondary metabolites and might be more efficient in transporting amino acids and organic compounds.

Abstract

Denne rapporten presenterer resultater fra forsøk med populasjoner fra Sør-Norge og Trøndelag og med provenienser fra Mellom-Europa og Finland. Både korttidsforsøk plantet på jordbruksmark og feltforsøk i skogen ble plantet. Målinger og registreringer ble gjort av høyde, tidlighet og høstskudd. Det var signifikante forskjeller i disse egenskapene både mellom provenienser, norske populasjoner og familier innen populasjoner. For de norske populasjonene var det samspill for middeltall av høyde og tidlighet i korttids- og feltforsøkene. Betydelige samspill for overlevelse og høyde ble funnet mellom provenienser og lokaliteter for feltforsøk som bare ligger noen få kilometer fra hverandre. Disse samspillene kom sannsynligvis på grunn av forskjeller i det lokale temperaturklimaet. Kunnskap om samspill og om de avhenger av geografiske og klimatiske faktorer, er viktig både for valg av provenienser og for planteforedlingen for gran.

To document

Abstract

Simple Summary: The fall armyworm (FAW), Spodoptera frugiperda has now become a pest of global importance. Its introduction and detection in Africa in 2016, and subsequent introduction and spread into Asia and Australia, has put several millions of food producers and maize farmers at risk. Not all pest management strategies are sustainable. Biological control with the use of parasitoid wasps is one of the durable and environmentally sound options. The present study was initiated to predict the habitats of high establishment potential of key parasitoids of FAW in South America, which might prove to be effective as classical biological control agents of FAW in regions where it is an invasive species under current and future climate scenarios. The prospective parasitoids are the following: Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum. The results demonstrate overlapping habitat suitability areas of the pest and the parasitoids, suggesting promises for biological control options for the management of FAW under current and future climate scenarios. Abstract: The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d’Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe.

To document

Abstract

Process-based grass models (PBGMs) are widely used for predicting grass growth under potential climate change and different management practices. However, accurate predictions using PBGMs heavily rely on field observations for data assimilation. In data-limited areas, performing robust and reliable estimates of grass growth remains a challenge. In this paper, we incorporated satellite-based MODIS data products, including leaf area index, gross primary production and evapotranspiration, as an additional supplement to field observations. Popular data assimilation methods, including Bayesian calibration and the updating method ensemble Kalman filter, were applied to assimilate satellite derived information into the BASic GRAssland model (BASGRA). A range of different combinations of data assimilating methods and data availability were tested across four grassland sites in Norway, Finland and Canada to assess the corresponding accuracy and make recommendations regarding suitable approaches to incorporate MODIS data. The results demonstrated that optimizing the model parameters that are specific for grass species and cultivar should be targeted prior to updating model state variables. The MODIS derived data products were capable of constraining model’s simulations on phenological development and biomass accumulation by parameter optimization with its performance exceeding model outputs driven by default parameters. By integrating even a small number of field measurements into the parameter calibration, the model’s predictive accuracy was further improved - especially at sites with obvious biases in the input MODIS data. Overall, this comparative study has provided flexible solutions with the potential to strengthen the capacity of PBGMs for grass growth estimation in practical applications.