Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
No abstract has been registered
Authors
Mohammad Tirgariseraji Tomas Persson Yaghoob Jafari Mahmood Sabouhi Sabouni Alisher Mirzabaev Alireza Nikouei Naser Shahnoushi ForoushaniAbstract
No abstract has been registered
Authors
Divina Gracia P. RodriguezAbstract
The world's burgeoning billions have been kept fed thanks to the "Green Revolution" of the 20th century, which featured new hybridized crops with enhanced yields. Often deemed a miracle of science, it was also made possible by energy-intensive industrial fertilizers. Fritz Haber and Carl Bosch were each awarded the Nobel Prize for their contributions to the widely used processes for synthesizing ammonia from nitrogen taken from ambient air and hydrogen derived from fossil fuels. These ammonia-based nitrogen fertilizers, along with mined fertilizers, today help to feed the world, something Thomas Robert Malthus never envisioned in his 18th century writings warning of overpopulation. Today we are concerned with another green revolution that seeks to end the use of fossil fuels, which when burned create emissions that are dangerously warming the atmosphere and creating the need for a second agricultural revolution to ensure the world's billions can still be fed in the face of drastic climatic extremes. So as we look to decarbonize the world's economy and phase out the use of fossil fuels, what is the fertilizer industry doing to green its highly fossil fuel-dependent industrial and mining processes? We talk with Alzbeta Klein, CEO of the International Fertilizer Association, freshly returned from COP28 in Dubai, where for the first time the world's nations agreed to the need to phase out fossil fuels to temper the runaway climate change we are experiencing. "Food is energy, and we need to understand that connection," Klein says. "We need to understand the transition for the energy markets, and we need to understand the transition for the food market because the two go hand-in-hand." We also hear from Hiro Iwanaga of Talus Renewables, a nitrogen fertilizer startup at the forefront of using photovoltaics to crack hydrogen from water, rather than fossil fuels. Also freshly returned from Dubai, Iwanaga talks about his company's demonstration project now under way in Kenya, and the company's next projects here in the United States. "The green hydrogen tax credit that was passed as part of the Inflation Reduction Act makes our product cost-competitive," he explains. Also, Brandon Kail of Rocky Mountain BioAg speaks to his company's approach employing soil microbes as the foundation of a non-fossil fuel-based approach to plant nutrition, and Divina Gracia P. Rodriguez of the Norwegian Institute of Bioeconomy Research tells us about an EU-funded project in Ethiopia she is spearheading that seeks to address barriers to the adoption of human urine-based fertilizers.
Authors
Cecilie Marie Mejdell Knut Egil Bøe Grete H. Meisfjord Jørgensen Turid BuvikAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Volkmar TimmermannAbstract
No abstract has been registered
Authors
Ralf Rautenberger Alexandre Detain Kari Skjånes Peter Simon Claus Schulze Viswanath Kiron Daniela Morales SanchezAbstract
No abstract has been registered
Authors
Sandra Rojas-Botero Simon Dietzel Johannes Kollmann Leonardo H. TeixeiraAbstract
Urbanization causes ecosystem degradation and losses of biodiversity. Still, urban landscapes favor organisms, depending on how well they fit the anthropogenic conditions. Creating urban green spaces of high ecological quality, such as pollinator-friendly road verges, promotes biodiversity in cities. We sowed a seed mixture consisting of 26 native plant species with diverse functional traits in 46 road verge patches along four urban roads in Munich (South Germany) in 2019/20 and monitored in 2020/21. Control were pre-existing turfgrass patches with conventional management. We assessed species richness, Shannon diversity, and Pielou's evenness, whereas functional composition was evaluated via functional richness, evenness, and divergence, based on 13 plant traits. To study urbanization effects on species and functional composition, we analyzed soil characteristics and tree shading at the local level, as well as distance to city center, imperviousness, and edge density at the landscape level. We used linear models and ordination analysis to assess treatment, local and landscape effects, and the influence of planting year on taxonomic and functional composition. Rehabilitation treatment explained most differences in species and functional composition. Species richness was lower in the city center and at sites with high soil organic matter; Pielou's evenness increased with soil pH. Trait composition differed between rehabilitated and control patches, and varied according to planting year. Soil bulk density negatively affected functional richness for all traits combined, and edge density reduced functional evenness of establishment traits. We conclude that urban filtering, in combination with planting year, shapes species and trait composition of rehabilitated road verges. Hence, local and landscape-level trait–environment interactions affect the assembly of road verge grasslands. Finally, our findings suggest that establishment traits have a pivotal role in the development of rehabilitated road verges, while the predictability of rehabilitation outcomes may be hindered even when seeding specifically designed seed mixtures.