Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Humic substances are important indicators of soil fertility. The fluorescence properties of humic acids from black soils in Harbin, northeast China, were investigated, after long-term fertilization using treatments with or without mineral fertilizer (NPK) and organic manure. Excitation and emission matrices combined with parallel factor analysis were used to investigate the structure of the humic acid. Principal component analysis was performed to select the most suitable parameters for the description of humic acid. The dimension reduction for the original fluorescence parameters extracted two principal components. By using the two principal component scores as a new index for clustering, it was concluded that long-term fertilization treatments in black soil in Harbin clustered into three groups of manure + NPK and organic manure treatments, NPK treatment, and soil without any fertilization. Manure + NPK fertilization and manure fertilization alone led to a higher degree of humification than NPK only or the control. We conclude that long-term fertilization with organic matter with or without NPK could increase the humification degree of these soils.

To document

Abstract

The objective of this study was to make an overview assessment of the potential effects of intensified forest management, promoted by the Norwegian government as a climate mitigation measure, on water quality in Norwegian surface waters. This study evaluated the following measures for forest intensification: (i) afforestation, (ii) intensification of planting and (iii) nitrogen fertilization shortly before harvest. A substantial literature review was made and a further development of the DWARF- framework tailored for Norwegian conditions provided the base for the study. The assessments were made based on the potential effects after forest harvest, using different management strategies like stem-only harvest and whole-three harvest. The potential effects were analysed on multiple parameters with focus on acidification, eutrophication, heavy metals, and carbon sequestration. The study used temporal resolution to address what effects the forest management practices might lead to 1, 10 and 100 years after harvest. This study concludes that there will be trade-offs between transitioning to a low carbon society and water quality, and the severity of effects may differ if they are evaluated on an annual, decadal or century scale.

To document

Abstract

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer‐specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm‐specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real‐time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate “big data” in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.

To document

Abstract

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years. The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P. The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries. To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country. The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

To document

Abstract

Nitrogen (N) losses from agricultural areas, especially into drinking water and marine environments, attract substantial attention from governments and scientists. This study analysed nitrogen loss from runoff water using long-term monitoring data (1994–2016) from the Skuterud catchment in southeastern Norway and the Naurstad catchment in northern Norway. Precipitation and runoff were lower in the Skuterud catchment than in the Naurstad catchment. However, in the Skuterud catchment, the annual total N (TN) losses ranged from 27 to 68 kg hm−2. High precipitation (1247 mm) in the Naurstad catchment resulted in substantial runoff water (1108 mm) but relatively low total TN losses ranged from 17 to 35 kg hm−2. The proportion of nitrate losses to TN loss was 51–86% and 28–50% in the Skuterud and Naurstad catchments, respectively. Furthermore, the monthly average TN concentrations and nitrate losses had two peaks, in April–May and October, in the Skuterud catchment; however, no significant fluctuations were found in the Naurstad catchment. The contributions of N and runoff water to TN and nitrate losses were calculated using multiple linear regression, and runoff water was the major contributor to TN loss in both catchments. Runoff water was the main factor in the Skuterud catchment, and the nitrate-N concentration was the main factor in the Naurstad catchment.

To document

Abstract

Climate change is modifying temperature and precipitation regimes across all seasons in northern ecosystems. Summer temperatures are higher, growing seasons extend into spring and fall and snow cover conditions are more variable during winter. The resistance of dominant tundra species to these season-specific changes, with each season potentially having contrasting effects on their growth and survival, can determine the future of tundra plant communities under climate change. In our study, we evaluated the effects of several spring/summer and winter climatic variables (i.e., summer temperature, growing season length, growing degree days, and number of winter freezing days) on the resistance of the dwarf shrub Empetrum nigrum. We measured over six years the ability of E. nigrum to keep a stable shoot growth, berry production, and vegetative cover in five E. nigrum dominated tundra heathlands, in a total of 144 plots covering a 200-km gradient from oceanic to continental climate. Overall, E. nigrum displayed high resistance to climatic variation along the gradient, with positive growth and reproductive output during all years and sites. Climatic conditions varied sharply among sites, especially during the winter months, finding that exposure to freezing temperatures during winter was correlated with reduced shoot length and berry production. These negative effects however, could be compensated if the following growing season was warm and long. Our study demonstrates that E. nigrum is a species resistant to fluctuating climatic conditions during the growing season and winter months in both oceanic and continental areas. Overall, E. nigrum appeared frost hardy and its resistance was determined by interactions among different season-specific climatic conditions with contrasting effects.

To document

Abstract

Citizen science is sometimes described as "public participation in scientific research," or participatory monitoring. Such initiatives help to bring research into, for example, the classroom and engage pupils in well-structured observations of nature in their vicinity. The learning and practising of observation may increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using their own senses stimulate faster learning and cognition. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to all the accumulated data. The schools and pupils become part of a larger citizen effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system through the EDU–ARCTIC web-portal or the accompanying mobile app. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. There are also reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system also includes biological field observations of phenological phases of plants: birch, black adler, lilac, rowan, bilberry, rosebay willwherb and denadelion, in all 26 parameters. The occurrence of the first individual of five species of insects: bumblebee, mosquito, ant and 2 butterflies: common brimstone and European peacook, and the registration of the first appearance of the bird species: arctic tern, common cuckoo, white wagtail and crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and Polarpedia (the project’s own online encyclopedia) entries are developed to strengthen the monitoring system. The EDU-ARCTIC monitoring system gathered more than 2000 reports from schools, with an average monthly number of more than 80 observations. They are freely available via the web-portal, but password access is needed in order to enter registrations and data.

To document

Abstract

EDU-ARCTIC is an open-schooling project, funded by the EU for the years 2016-2019. The main aim is to attract young people (13-20 years old) to the natural sciences. The project is using Arctic to illustrate how research are carried out and put together in order to reveal what is happening in Arctic and how Europe ins influencing Arctic and how Arctic is influencing Europe. To achieve these goals, EDU-ARCTIC uses innovative online tools like webinars provided by scientists, Polarpedia (an online encyclopaedia) of scientific terms used in the EDU ARCTIC, as well as the monitoring system that is an open-access database including app for motivation on field registration. In addition, the EDU-ARCTIC offers Arctic Competitions, where pupils submit their idea for a science project as an essay, a poster or a video. During a three-step evaluation, a few lucky winners get the possibility to join scientists on expeditions to polar research stations during the summer. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using own senses stimulate to faster learning and cognition. The learning and practicing of observation increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to interesting accumulated data. The schools and pupils become a part of a larger effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system at the EDU–ARCTIC web-portal. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are requested reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. It is also asking for reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system is also include biological field observations, including plants, like Birch, Lilac, Bilberry in all 26 parameters. Then occurrence of first individual of five species of insects like Bumble bee, Mosquito, Ant and butterfly, and then registration of first appearance of the bird species Arctic tern, Common Cuckoo, White wagtail and Crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and polarpedia entries are developed to strengthen the monitoring system. The web-portal is open source but password access is needed in order to enter registrations. keywords: observation system, natural science, interdisciplinary, stem.

To document

Abstract

EDU-ARCTIC is an open-schooling project, funded by the EU for the years 2016-2019 and managed by scientists, nature educators and IT technicians. The main aim is to attract young people (13-20 years old) to the natural sciences. Further, to raise awareness of how everything in nature is connected, and that STEM education therefore in part must be interdisciplinary across normal school curricula. To achieve these goals, EDU-ARCTIC uses innovative online tools with open-access, combined with nature expeditions. Four main modules complement each other, but can also be used independently: 1) Webinars, where scientists conduct online lessons about their own field of expertise. The lessons comes as packages with worksheets and online games. The lessons brings youth close to scientists. They can ask questions what it means to work with science. It is also a valuable tool for teachers to brush up their STEM knowledge and get inspiration for their own teaching. 2) Polarpedia, which is an online encyclopaedia of scientific terms used in the webinars. The science is kept easy-to-grasp, with the aim to stimulate the pupils’ curiosity to look for more information. 3) Monitoring system, which uses citizen science and the project’s own app to record observations of meteorology and phenology. Observations are open for everybody to use in their own teachings. 4) Arctic Competitions, which is the module that has engaged the pupils the most. They submit their idea for a science project in late autumn, work with the project over the winter and present it in spring as an essay, a poster or a video. Teachers come up with innovative ways to fit this work into the normal curricula. A few lucky winners get to join scientists on expeditions to polar research stations. After 2.5 years, EDU-ARCTIC has engaged at least 1093 teachers from 58 countries. There is a language barrier for some teachers, and it is difficult to fit webinars into the school timetable. However, the challenges are minor compared to the interdisciplinary success of having teachers meet across countries and curricula. Here we illustrate this in detail by presenting a way of interdisciplinary teaching (“the beauty of poetry and maths”) developed by one of the teachers in the project, Mr. Francisco José Gómez Senent. Starting from a single poem published in Nature, it innovatively combines mathematics, literature, history and linguistic competence. The teacher originally used it to stimulate curiosity about the aesthetic criterion in science. Science is not only about facts! The approach can be generalized to cover a wide range of curricula, and different teachers can use it in a team effort across classes. Conclusion: The EDU-ARCTIC project has demonstrated that letting teachers meet across countries and teaching fields facilitates inspiring and innovative cross-overs in the normal school curricula. When teachers are inspired we believe it creates a happy teacher – happy teaching effect. keywords: interdisciplinary, natural science, open schooling, research, transdisciplinary.