Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2008

Abstract

Studies regarding the environmental impact of engineered nanoparticles (ENPs) are hampered by the lack of tools to localize and quantify ENPs in water, sediments, soils, and organisms. Neutron activation of mineral ENPs offers the possibility of labeling ENPs in a way that avoids surface modification and permits both localization and quantification within a matrix or an organism. Time-course experiments in vivo also may be conducted with small organisms to study metabolism and exposure, two aspects currently lacking in ecotoxicological knowledge about ENPs. The present report explains some of the prerequisites and advantages of neutron activation as a tool for studying ENPs in environmental samples and ecologically relevant organisms, and it demonstrates the suitability of neutron activation for Ag, Co/Co3O4, and CeO2 nanoparticles. In a preliminary experiment with the earthworm Eisenia fetida, the dietary uptake and excretion of a Co nanopowder (average particle size, 4 nm; surface area, 59 m(2)/g) were studied. Cobalt ENPs were taken up to a high extent during 7 d of exposure (concentration ratios of 0.16-0.20 relative to the ENP concentration in horse manure) and were largely retained within the worms for a period of eight weeks, with less than 20% of absorbed ENPs being excreted. Following dissection of the worms, Co-60 was detected in spermatogenic cells, cocoons, and blood using scintillation counting and autoradiography. The experimental opportunities that neutron activation of ENPs offer are discussed.

To document

Abstract

Recent in situ 13C studies suggest that lignin is not stabilised in soil in its polymerised form. However, the fate of its transformation products remains unknown. The objective of the present research was to provide the first comprehensive picture of the fate of lignin-derived C across its transformations processes: (1) C remaining as undecomposed lignin molecules, (2) C in newly formed humic substances, i.e. no longer identifiable as lignin-polymer C, (3) C in microbial biomass, (4) C mineralised as CO2, and (5) dissolved organic C. To achieve this objective, we designed an incubation experiment with 13C-labelled lignin where both elementary and molecular techniques were applied. Lignin was isolated from 13C labelled maize plants (13C-MMEL) and incubated in an agricultural soil for 44 weeks. Carbon mineralisation and stable isotope composition of the released CO2 were monitored throughout the incubation. Microbial utilisation of 13C-MMEL was measured seven times during the experiment. The turnover rate of the lignin polymer was assessed by 13C analysis of CuO oxidation products of soil lignin molecules. After 44 incubation weeks, 6.0% of initial 13C-MMEL carbon was mineralised, 0.8% was contained in the microbial biomass, and 0.1% was contained in dissolved organic C form. The compound-specific 13C data suggest that the remaining 93% were overwhelmingly in the form of untransformed lignin polymer. However, limited transformation into other humic substances potentially occurred, but could not be quantified because the yield of the CuO oxidation method proved somewhat variable with incubation time. The initial bacterial growth yield efficiency for MMEL was 31% and rapidly decreased to plateau of 8%. A two-pool first-order kinetics model suggested that the vast majority (97%) of MMEL lignin had a turnover time of about 25 years, which is similar to field-estimated turnover times for soil-extractable lignin but much longer than estimated turnover times for fresh plant-residue lignin. We conclude that natural lignin structures isolated from plants are rather unreactive in soil, either due to the lack of easily available organic matter for co-metabolism or due to enhanced adsorption properties. The data also suggest that fairly undecomposed lignin structures are the main reservoir of lignin-derived C in soils.