Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Purpose: Due to environmental concerns, efforts are made to replace the use of peat in horticultural growth media by organic wastes. Four growth media were prepared with the purpose of achieving adequate physical and chemical properties for plant production. Materials and methods: Growth media prepared from mixtures of coir (C) and paper sludge (P), respectively, with two biogas digestates from food waste (D1 and D2), were tested. These mixtures, 20% D1 or D2 + 80% C or P (v/v), were evaluated as growth media for tomato (Solanum lycopersicum L.) and lettuce (Lactuca sativa L.). Results and conclusion: The growth media were all physically stable during the growing period, provided all the macronutrients and most of the micronutrients necessary for plant growth, adequate pH conditions, as well as an adequate electrical conductivity. The mixture of D2 and P produced the highest biomass compared to a mineral fertilised peat (control), with a biomass production of 76% of the control for lettuce and 54% for tomato. Causes for the biomass reduction relative to the control may be related to ammonium toxicity effects, and/or limited plant-available water. The digestates, particularly D1, seemed also to have a phytotoxic effect on the germination.

Abstract

Norway is strongly committed to the Paris Climate Agreement with an ambitious goal of 40% reduction in greenhouse gas emission by 2030. The land sector, including agriculture and forestry, must critically contribute to this national target. Beyond emission reduction, the land sector has the unique capacity to actively removing CO2 from the atmosphere through biological carbon storage in biomass and in soils. Soils are the largest reservoir of terrestrial carbon, and relatively small changes in soil carbon content can have an amplified mitigation effect on the Earth’s climate. Therefore, improved management of soils for carbon storage is receiving a lot of attention, for example through international political initiatives such as the “4-permill” initiative. However, in Norway, many mitigation measures targeting soil carbon might negatively impact food production and economic activity. For example, soil carbon storage can be increased by shifting from cereal crop production to grasslands, but Norway already has abundant grassland and a comparatively small area dedicated to cereals. Another such issue is cultivation on drained peatland, where food is produced at the expense of large losses of soil carbon as CO2 to the atmosphere. Therefore, there is a need to look for win-win solutions for soil carbon storage, which benefit both food production and climate mitigation. Large-scale conversion of agricultural and forest waste biomass to biochar is such an option, and is considered the activity with the largest potential for soil carbon sequestration in Norway. Biochar has been demonstrated to have a mean residence time exceeding 100 years in Norwegian field conditions (Rasse et al, 2017), and no negative effects on plant and soils has been observed. However, despite the convincing benefits of biochar as a climate mitigation solution, it has not yet advanced much beyond the research stage, notably because its effect on yield are too modest. Here, we will first present the comparative advantage of biochar technology as compared to traditional agronomy methods for large-scale C storage in Norwegian agricultural soils. We will further discuss the need for developing innovations in pyrolysis and nutrient-rich waste recycling leading to biochar-fertilizer products as win-win solution for carbon storage and food production.

To document

Abstract

The hydrological processes associated with vegetation and their effect on slope stability are complex and so difficult to quantify, especially because of their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field based research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation types, and none dedicated to marine clay soils (typically soil type for Norway). In order to fill this gap we established hydrological and mechanical monitoring of selected test plots within a stream bank, covered with different types of vegetation, typical for Norwegian agricultural areas (grass, shrubs and trees). The soil moisture, groundwater level and stream water level were continuously monitored. Additionally, soil porosity and shear strength were measured regularly. Observed hydrological trends and differences between three plots (grass, tree and shrub) were analysed and formed the input base for stream bank stability modeling. We did not find particular differences between the grass and shrub plot but we did observe a significantly lower soil moisture content, lower soil porosity and higher shear strength within the tree plot. All three plots were stable during the monitoring period, however modeling scenarios made it possible to analyse potential differences in stream bank stability under different vegetation cover depending on root reinforcement and slope angle.

To document

Abstract

The saturated hydraulic conductivity of soil, Ks, is a critical parameter in hydrological models that remains notoriously difficult to predict. In this study, we test the capability of a model based on percolation theory and critical path analysis to estimate Ks measured on 95 undisturbed soil cores collected from contrasting soil types. One parameter (the pore geometry factor) was derived by model fitting, while the remaining two parameters (the critical pore diameter, dc, and the effective porosity) were derived from X‐ray computed tomography measurements. The model gave a highly significant fit to the Ks measurements (p < 0.0001) although only ~47% of the variation was explained and the fitted pore geometry factor was approximately 1 to 2 orders of magnitude larger than various theoretical values obtained for idealized porous media and pore network models. Apart from assumptions in the model that might not hold in reality, this could also be attributed to experimental error induced by, for example, air entrapment and changes in the soil pore structure occurring during sample presaturation and the measurement of Ks. Variation in the critical pore diameter, dc, was the dominant source of variation in Ks, which suggests that dc is a suitable length scale for predicting soil permeability. Thus, from the point of view of pedotransfer functions, it could be worthwhile to direct future research toward exploring the correlations of dc with basic soil properties and site attributes.