Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Accurate estimations of phenophases in deciduous trees are important to understand forest ecosystems and their feedback on the climate. In particular, the timing of leaf senescence is of fundamental importance to trees’ nutrient stoichiometry and drought tolerance and therefore to trees’ vigor and fecundity. Nevertheless, there is no integrated view on the significance, and direction, of seasonal trends in leaf senescence, especially for years characterized by extreme weather events. Difficulties in the acquisition and analyses of hierarchical data can account for this. We collected four years of chlorophyll content index (CCI) measurements in thirty-eight individuals of four deciduous tree species (Betula pendula, Fagus sylvatica, Populus tremula and Quercus robur) in Belgium, Norway and Spain, and analyzed these data using generalized additive models for location, scale and shape (GAMLSS). As a result, (I) the phenological strategy and seasonal trend of leaf senescence in these tree species could be clarified for exceptionally dry and warm years, and (II) the daily average (air) temperature, global radiation, and vapor pressure deficit could be established as main drivers behind the variation in the timing of the senescence transition date. Our results show that the onset of the re-organization phase in the leaf senescence, which we approximated and defined as local minima in the second derivative of a CCI graph, was in all species mainly negatively affected by the average temperature, global radiation and vapor pressure deficit. All together the variables explained 89 to 98% of the variability in the leaf senescence timing. An additional finding is that the generalized beta type 2 and generalized gamma distributions are well suited to model the chlorophyll content index, while the senescence transition date can be modeled using the normal-exponential-student-t, generalized gamma and zero-inflated Box-Cox Cole and Green distributions for beech, oak and birch, and poplar, respectively.

To document

Abstract

The role of soil moisture for organic matter decomposition rates remains poorly understood and underrepresented in Earth System Models (ESMs). We apply the Dual Arrhenius Michaelis-Menten (DAMM) model to a selection of ESM soil temperature and moisture outputs to investigate their effects on decomposition rates, at different soil depths, for a historical period and a future climate period. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates (up to ± 20%), compared to a temperature-only approach. In the top soil, the majority of these changes is driven by substrate availability. In deeper soil layers, oxygen availability plays a relatively stronger role. Owing to these different moisture controls along the soil depth, our study highlights the need for depth-resolved inclusion of soil moisture effects on decomposition rates within ESMs. This is particularly important for C-rich soils in regions which may be subject to strong future warming and vertically opposing moisture changes, such as the peat soils at northern high latitudes.

To document

Abstract

Wood growth phenology of temperate deciduous trees is less studied than leaf phenology, hindering the understanding of their interaction. In order to describe the variability of wood growth and leaf phenology across locations, species and years, we performed phenological observations of both xylem formation and leaf development in three typical temperate forest areas in Western Europe (Northern Spain, Belgium and Southern Norway) for four common deciduous tree species (Fagus sylvatica L., Betula pendula Roth., Populus tremula L. and Quercus robur L.) in 2018, 2019 and 2020, with only beech and birch being studied in the final year. The earliest cambial reactivation in spring occurred at the Belgian stands while the end of cambial activity and wood growth cessation generally occurred first in Norway. Results did not show much consistency across species, sites or years and lacked general patterns, except for the end of cambial activity, which occurred generally first in birch. For all species, the site variation in phenophases (up to three months) was substantially larger than the inter-annual variability (up to six weeks). The timeline of bud-burst and cambium reactivation, as well as of foliar senescence and cessation of wood growth, were variable across species even with the same type of wood porosity. Our results suggest that wood growth and leaf phenology are less well connected than previously thought. Linear models showed that temperature is the dominant driver of wood growth phenology, but with climate zone also having an effect, especially at the start of the growing season. Drought conditions, on the other hand, have a larger effect on the timing of wood growth cessation. Our comprehensive analysis represents the first large regional assessment of wood growth phenology in common European deciduous tree species, providing not only new fundamental insights but also a unique dataset for future modelling applications.

To document

Abstract

The preservation of the functionality of forest soil is a key aspect in planning mechanized harvesting operations. Therefore, knowledge and information about stand and soil characteristics are vital to the planning process. In this respect, depth-to-water (DTW) maps were reviewed with regard to their potential use as a prediction tool for wheel ruts. To test the applicability of open source DTW maps for prediction of rutting, the ground surface conditions of 20 clear-cut sites were recorded post harvesting, using an unmanned aerial vehicle (UAV). In total, 80 km of machine tracks were categorized by the severity of occurring rut-formations to investigate whether: i) operators intuitively avoid areas with low DTW values, ii) a correlation exists between decreasing DTW values and increasing rut severity, and iii) DTW maps can serve as reliable decision-making tool in minimizing the environmental effects of big machinery deployment. While the machine operators did not have access to these predictions (DTW maps) during the operations, there was no visual evidence that driving through these areas was actively avoided, resulting in a higher density of severe rutting within areas with DTW values <1 m. A logistic regression analysis confirmed that the probability of severe rutting rapidly increases with decreasing DTW values. However, significant differences between sites exist which might be attributed to a series of other factors such as soil type, weather conditions, number of passes and load capacity. Monitoring these factors is hence highly recommended in any further follow-up studies on soil trafficability.

Abstract

SiTree is a flexible, cross-platform, open-source framework for individual-tree simulators intended to facilitate accurate and flexible analyses of forest growth and yield, or more generally forest dynamics simulations. SiTree provides generic functionality to build customized individual-tree simulators using additional user-written code. In the forestry literature there are a wide variety of individual models that describe the different parts of forest growth and dynamics and new models are continuously developed and published. The aim of SiTree is to provide a broad community of R-users within forestry with an easily adaptable individual-tree simulator framework and an easily accessible tool for testing and combining new and existing models describing parts of forest growth dynamics.

To document

Abstract

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).

Abstract

Heat Field Deformation (HFD) is a widely used method to measure sap flow of trees based on empirical relationships between heat transfer within tree stems and the sap flow rates. As an alternative, the Linear Heat Balance (LHB) method implements the same instrumental configuration as HFD but calculates the sap flow rates using analytical equations that are derived from fundamental conduction-convection heat transfer theories. In this study, we systematically compared the sap flow calculated using the two methods based on data that were recorded using the same instrument. The measurements were conducted on four Norway spruce trees. We aimed to evaluate the discrepancies between the sap flow estimates from the two methods and determine the underlying causes. Diurnal and day-to-day patterns were consistent between the sap flow estimates from the two methods. However, the magnitudes of the estimated sap flow were different between them, where LHB resulted in much lower estimates in three trees and slightly higher estimates in one compared to HFD. We also observed larger discrepancies in negative (reversed flow) than in positive sap flow, where the LHB resulted in lower reversed flow than HFD. Consequently, the seasonal budget estimated by LHB can be as low as ∼20% of that estimated by HFD. The discrepancies can be mainly attributed to the low wood thermal conductivities for the studied trees that lead to substantial underestimations using the LHB method. In addition, the sap flow estimates were very sensitive to the value changes of the empirical parameters in the calculations and, thus, using a proper case-specific value is recommended, especially for the LHB method. Overall, we suggest that, despite the strong theoretical support, the correctness of LHB outputs depends largely on the tree individuals and should be carefully evaluated.

Abstract

As a way to estimate evapotranspiration (ET), Heat Field Deformation (HFD) is a widely used method to measure sap flow of trees based on empirical relationships between heat transfer within tree stems and the sap flow rates. As an alternative, the Linear Heat Balance (LHB) method implements the same instrumental configuration as HFD but calculates the sap flow rates using analytical equations that are derived from fundamental conduction-convection heat transfer equations.