Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2014

To document

Abstract

Whole trees from energy thinnings constitute one of many forest fuel sources, yet ten widely applied supply chains could be defined for this feedstock alone. These ten represent only a subset of the real possibilities, as felling method was held constant and only a single market (combustion of whole tree chips) was considered. Stages included in-field, roadside landing, terminal, and conversion plant, and biomass states at each of these included loose whole trees, bundled whole trees or chipped material. Assumptions on prices, performances, and conversion rates were based on field trials and published literature in similar boreal forest conditions. The economic outcome was calculated on the basis of production, handling, treatment and storage costs and losses. Outcomes were tested for robustness on a range of object volumes (50–350 m3solid), extraction distances (50–550 m) and transport distances (10–70 km) using simulation across a set of discrete values. Transport was calculated for both a standard 19.5 m and an extended 24 m timber truck. Results showed that the most expensive chain (roadside bundling, roadside storage, terminal storage and delivery using a 19.5 m timber truck) at 158 € td−1 was 23% more costly than the cheapest chain (roadside chipping and direct transport to conversion plant with container truck), at 128 € td−1. Outcomes vary at specific object volumes and transport distances, highlighting the need to verify assumptions, although standard deviations around mean supply costs for each chain were small (6%–9%). Losses at all stages were modelled, with the largest losses (23 € td−1) occurring in the chains including bundles. The study makes all methods and assumptions explicit and can assist the procurement manager in understanding the mechanisms at work.

To document

Abstract

Since the late nineteenth century when high-cost equipment was introduced into forestry there has been a need to calculate the cost of this equipment in more detail with respect to, for example, cost of ownership, cost per hour of production, and cost per production unit. Machine cost calculations have been made using various standard economic methods, where costs have been subdivided into capital costs and operational costs. Because of differences between methods and between national egulations, mainly regarding tax rules and subsidies, inter-national comparisons of machine costs are difficult. To address this, one of the goals of the European Cooperation in Science and Technology (COST) Action FP0902 was to establish a simple format for transparent cost calculations for machines in the forest biomass procurement chain. A working group constructed a Microsoft Excel – based spreadsheet model which is easy to understand and use. Input parameters are easy to obtain or possible to estimate by provided rules of thumb. The model gives users a simultaneous view of the input parameters and the resulting cost outputs. This technical note presents the model, explains how the calculations are made, and provides future users with a guide on how to use the model. Prospective users can view the model in the Supplementary Material linked to this article online

Abstract

Variable retention harvesting is acknowledged as a cost-effective conservation measure, but previous studies have focused on the environmental value and planning cost. In this study, a model is presented for optimizing harvesting cost using a high resolution map generated from airborne laser scanning data. The harvesting cost optimization model is used to calculate the objective value of different scenarios. By comparing the objective values, better estimates of the opportunity cost of woodland key habitats are found. The model can be used by a forest manager when evaluating what silvicultural treatments to implement or as an input for improving the nature reserve selection problem for woodland key habitats or retention patches. The model was tested on four real-world cases, and the results indicate that terrain transportation costs vary more than reported in the literature and that it may be worthwhile to divide the opportunity cost into its direct and indirect components.

To document

Abstract

Treatability of wood is a function of anatomical properties developed under certain growing conditions. While Scots pine sapwood material normally is considered as easy to impregnate, great variations in treatability can be observed. In order to study anatomical differences in the structural elements of transverse fluid passage, wood material with contrasting treatability has been compared. Ray composition and resin canal network, membrane areas of fenestriform pits in the cross-field as well as dimension and properties of bordered pits were investigated. The results showed large anatomical differences between the two contrasting treatability groups. Refractory Scots pine sapwood samples developed more rays per mm2 tangential section, while they were on average lower in cell numbers than rays found in easily treatable material. Easily treatable material had more parenchyma cells in rays than refractory material. At the same time, a larger membrane area in fenestriform pits in the cross-field was observed in the easily treatable sample fraction. Differences in the composition of resin canal network were not observed. Refractory samples developed on average smaller bordered pit features, with relatively small formed pit apertures compared to the easily treatable samples. In refractory Scots pine sapwood material, the structural elements of fluid passage such as bordered pit dimensions, fenestriform pits in the cross-field and parenchyma cells were altogether developed in smaller dimensions or number. Wood samples from better growing conditions and sufficient water supply showed a better treatability in this study.