Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Abstract

A future wetter climate in Northern Europe may increase soil compaction from traffic of heavy machinery. This study investigated the impact of tractor traffic on grassland yield, soil physical properties and penetration resistance in three experimental field trials in Norway; on medium sand at Tjøtta, Nordland, on silty medium sand at Fureneset, Sogn og Fjordane and on silt at Løken, Oppland. The experiments were conducted in a split-plot design with three levels of two wheel-by-wheel passes with tractor traffic after each cut: no traffic, light tractor or heavy tractor on large plots, and three different seed mixtures on small plots. The yield reduction by tractor traffic was 26% at Løken, 4% at Fureneset and 1% at Tjøtta. There was a positive correlation between soil moisture content and yield reduction by traffic. Tractor traffic reduced pore volume and air capacity and increased bulk density, compaction degree and penetration resistance with the largest effect at Løken and the smallest at Tjøtta. There were no statistically significant differences in yield or soil physical properties between light and heavy tractor. The study shows that soil texture and soil moisture content are major factors explaining traffic effects on soil physical properties and grassland yield.

Abstract

High concentrations of the mycotoxin deoxynivalenol (DON), produced by Fusarium graminearum have occurred frequently in Norwegian oats recently. Early prediction of DON levels is important for farmers, authorities and the Cereal Industry. In this study, the main weather factors influencing mycotoxin accumulation were identified and two models to predict the risk of DON in oat grains in Norway were developed: (1) as a warning system for farmers to decide if and when to treat with fungicide, and (2) for authorities and industry to use at harvest to identify potential food safety problems. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). A mathematical model was developed and used to estimate phenology windows of growth stages in oats (tillering, flowering etc.). Weather summarisations were then calculated within these windows, and the Spearman rank correlation factor calculated between DON-contamination in oats at harvest and the weather summarisations for each phenological window. DON contamination was most clearly associated with the weather conditions around flowering and close to harvest. Warm, rainy and humid weather during and around flowering increased the risk of DON accumulation in oats, as did dry periods during germination/seedling growth and tillering. Prior to harvest, warm and humid weather conditions followed by cool and dry conditions were associated with a decreased risk of DON accumulation. A prediction model, including only pre-flowering weather conditions, adequately forecasted risk of DON contamination in oat, and can aid in decisions about fungicide treatments.

2015

Abstract

Mineral NPK fertilizer and manure have been compared since 1922 in a ley–arable rotation. During 1982–2003, cattle manure at 20–60 Mg ha−1 year−1 yielded 10–20 % less than mineral fertilizer at 100 kg N:25 kg P:120 kg K ha−1 year−1. The higher manure rates gave large nutrient surpluses. Both manure and mineral fertilizer had increased soil organic carbon (SOC), by 11.3 and 3.4 Mg ha−1 in 1996. In order to study possible residual effects, no manure was applied in 2004–2007 and mineral fertilizer was withheld from some NPK plots. Effects on yield and nutrient uptake were evaluated in relation to plots with no nutrient supply since 1922 and plots still receiving 100 kg N, 25 kg P and 120 kg K ha−1 annually. No residual response of mineral fertilizer was found, but previous manure use gave large effects. The latter yields remained around 85 % of those obtained with mineral fertilizer. Previous use of both mineral fertilizer and manure still increased available soil nutrients and pH in 2007. Differences between treatments in SOC had by then declined slightly, to 9.7 and 2.8 Mg ha−1 for manure and mineral fertilizer respectively, relative to the unfertilized control. Manure and fertilizer applications were resumed in 2008, except at the highest previous manure rate, where mean residual responses up to 2014, relative to the unfertilized control, amounted to 55 % higher yield and increases in nutrient uptake of 47 kg N, 8 kg P and 53 kg K ha−1.