Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Fine-grained information on the level of individual trees constitute key components for forest observation enabling forest management practices tackling the effects of climate change and the loss of biodiversity in forest ecosystems. Such information on individual tree crowns (ITC's) can be derived from the application of ITC segmentation approaches, which utilize remotely sensed data. However, many ITC segmentation approaches require prior knowledge about forest characteristics, which is difficult to obtain for parameterization. This can be avoided by the adoption of data-driven, automated workflows based on convolutional neural networks (CNN). To contribute to the advancements of efficient ITC segmentation approaches, we present a novel ITC segmentation approach based on the YOLOv5 CNN. We analyzed the performance of this approach on a comprehensive international unmanned aerial laser scanning (UAV-LS) dataset (ForInstance), which covers a wide range of forest types. The ForInstance dataset consists of 4192 individually annotated trees in high-density point clouds with point densities ranging from 498 to 9529 points m-2 collected across 80 sites. The original dataset was split into 70% for training and validation and 30% for model performance assessment (test data). For the best performing model, we observed a F1-score of 0.74 for ITC segmentation and a tree detection rate (DET %) of 64% in the test data. This model outperformed an ITC segmentation approach, which requires prior knowledge about forest characteristics, by 41% and 33% for F1-score and DET %, respectively. Furthermore, we tested the effects of reduced point densities (498, 50 and 10 points per m-2) on ITC segmentation performance. The YOLO model exhibited promising F1-scores of 0.69 and 0.62 even at point densities of 50 and 10 points m-2, respectively, which were between 27% and 34% better than the ITC approach that requires prior knowledge. Furthermore, the areas of ITC segments resulting from the application of the best performing YOLO model were close to the reference areas (RMSE = 3.19 m-2), suggesting that the YOLO-derived ITC segments can be used to derive information on ITC level.

To document

Abstract

Panoptic segmentation is the combination of semantic and instance segmentation: assign the points in a 3D point cloud to semantic categories and partition them into distinct object instances. It has many obvious applications for outdoor scene understanding, from city mapping to forest management. Existing methods struggle to segment nearby instances of the same semantic category, like adjacent pieces of street furniture or neighbouring trees, which limits their usability for inventory- or management-type applications that rely on object instances. This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances, with the goal to alleviate that bottleneck. We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation. Experiments on the NPM3D urban mobile mapping dataset and the FOR-instance forest dataset demonstrate the effectiveness and versatility of the proposed strategy.