Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Conservation biological control (CBC) is a promising tool for ecological intensification that aims to establish resilient natural enemy populations that contribute to pest management with reduced use of pesticides and at the same time support native biodiversity in agroecosystems. Yet the impact of natural enemies in CBC is often limited due to missing resources such as food, habitat, and hibernation shelters. Here, we studied a CBC strategy that incorporates these essential resources combined with semiochemicals, focusing on how the common green lacewing can enhance biological control of aphids. In a 4-year field study conducted at three locations in the region of East Norway, we developed a CBC strategy combining the three measures ATTRACT (a ternary attractant that increase lacewing egg laying), FOOD (floral buffer strips), and SHELTER (insect hotels for overwintering survival) to increase aphid biological control in spring barley. We recorded the number of lacewings, ladybirds, hoverflies, parasitized aphid mummies, and the two cereal aphid species Sitobion avenae and Rhopalosiphum padi. Our CBC strategy resulted in a significant increase in lacewing activity and significant aphid suppression. At all three locations and over the 4-year period, aphid infestation was below the economic damage threshold in the field plots using CBC measures. In contrast, during two of the years, the density of the aphid infestation in the control plots was significantly above the damage threshold. We found evidence that use of the ternary attractant supported green lacewings but led to loss of ladybirds, hoverflies, and parasitoids, even though flower strips were used as alternative resources. Our study shows a promising increase in lacewing activity in the agricultural landscape and high biological control of aphids in barley. Long-term field studies are needed to evaluate the impact on non-target species and the agroecosystem before practical application of this approach can be considered.

To document

Abstract

The genus Metarhizium is composed of species used in biological control programs of agricultural pests worldwide. This genus includes common fungal pathogen of many insects and mites and endophytes that can increase plant growth. Metarhizium humberi was recently described as a new species. This species is highly virulent against some insect pests and promotes growth in sugarcane, strawberry, and soybean crops. In this study, we sequenced the genome of M. humberi, isolate ESALQ1638, and performed a functional analysis to determine its genomic signatures and highlight the genes and biological processes associated with its lifestyle. The genome annotation predicted 10633 genes in M. humberi, of which 92.0% are assigned putative functions, and ∼17% of the genome was annotated as repetitive sequences. We found that 18.5% of the M. humberi genome is similar to experimentally validated proteins associated with pathogen–host interaction. Compared to the genomes of eight Metarhizium species, the M. humberi ESALQ1638 genome revealed some unique traits that stood out, e.g., more genes functionally annotated as polyketide synthases (PKSs), overrepresended GO-terms associated to transport of ions, organic and amino acid, a higher percentage of repetitive elements, and higher levels of RIP-induced point mutations. The M. humberi genome will serve as a resource for promoting studies on genome structure and evolution that can contribute to research on biological control and plant biostimulation. Thus, the genomic data supported the broad host range of this species within the generalist PARB clade and suggested that M. humberi ESALQ1638 might be particularly good at producing secondary metabolites and might be more efficient in transporting amino acids and organic compounds.