Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Prey species may display anti-predatory behavior, i.e., flight, increased vigilance, and decreased feeding, in response to the true presence of a predator or to the implied presence of a predator through, e.g., acoustic cues. In this study, we investigated the anti-predatory reactions of moose (Alces alces) to acoustic stimuli related to hunting, at saltlick stones, a known attractant. In before-during-after-control-impact experiments, we compared the behavioral responses of individuals to: (i) two hunting-related acoustic stimuli—hunting dog barking and human speaking; (ii) nonpredatory acoustic stimuli—bird sounds and; and (iii) no acoustic stimulus (control). We asked: (1) How does the probability of moose leaving the site differ depending on the stimulus they are exposed to?; (2) What affect do the acoustic stimuli have on the amount of time moose spend vigilant, feeding, or away from the site?; and (3) What affect do the stimuli have on the time between events at a site? We found that when exposed to the human stimulus, moose left the sites in 75% of the events, which was significantly more often compared to the dog (39%), bird (24%), or silent (11%) events. If moose did not leave the site, they spent more time vigilant, and less time feeding, particularly when exposed to a dog or human stimulus. Furthermore, moose spent the most time away from the site and took the longest to visit the site again after a human stimulus. Moose were also more likely to leave the site when exposed to the bird stimulus than during silent controls. Those that remained spent more time vigilant, but their behaviors returned to baseline after the bird stimulus ended. These findings suggest that acoustic stimuli can be used to modify the behavior of moose; however, reactions towards presumably threatening and nonthreatening stimuli were not as distinct as we had expected.

To document

Abstract

1. The persistence of perennial herbaceous species is threatened by increasing aridity. However, summer dormancy is a strategy conferring superior survival to grasses adapted to hot and dry summers. The role of temperature on the induction of summer dormancy was investigated in the perennial grass Dactylis glomerata to analyse the potential expression of this strategy under warmer climates. 2. We tested seven populations of D. glomerata originating from Morocco to Norway across the same latitudinal gradient in a five-site experiment. One population of the highly summer-dormant grass Poa bulbosa was used as a reference. Plants were grown from autumn in pots under full irrigation for 1 year mostly under open-air shelters. Heading date (ear emergence preceding flowering) was recorded and foliage senescence was assessed from end of spring until autumn. The maximum plant senescence under summer irrigation indicated the level of dormancy expression. Summer dormancy onset, release, expression and duration were modelled as a function of climatic variables. 3. From north to south, the duration of summer dormancy of the Mediterranean populations of D. glomerata and P. bulbosa ranged from 0 to 122 days, and 79 to 200 days, respectively. P. bulbosa was always completely dormant, while dormancy expression of D. glomerata was positively correlated with the sum of temperatures from winter onset (R2 = 0.57) and with the mean of minimum temperatures in summer (R2 = 0.73). Dormancy onset, release and duration were also positively correlated with thermal time from winter onset, while the duration of summer dormancy was longer as maximum temperatures increased. Mapping the European regions with climates allowing the expression of summer dormancy in D. glomerata showed that the potentially inductive areas for this strategy may expand in parallel with increasing summer aridity under a future climate warming scenario. 4. Synthesis. The large phenotypic variability of the expression of summer dormancy in D. glomerata was driven by temperature, suggesting that this strategy may have a greater role in higher latitudes to increase plant survival over the predicted hotter and drier summers. Leveraging this strategy for the choice and selection of suitable populations could enhance future adaptation of major perennial grasses to climate change.

To document

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant leukemia with extremely limited treatment for relapsed patients. N6‐methyladenosine (m6A) reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) participates in the initiation and growth of cancers by communicating with various targets. Here, we found IGF2BP2 was highly expressed in T-ALL. Gain and loss of IGF2BP2 demonstrated IGF2BP2 was essential for T-ALL cell proliferation in vitro and loss of IGF2BP2 prolonged animal survival in a human T-ALL xenograft model. Mechanistically, IGF2BP2 directly bound to T-ALL oncogene NOTCH1 via an m6A dependent manner. Furthermore, we identified a small-molecule IGF2BP2 inhibitor JX5 and treatment of T-ALL with JX5 showed similar functions as knockdown of IGF2BP2. These findings not only shed light on the role of IGF2BP2 in T-ALL, but also provide an alternative γ‑Secretase inhibitors (GSI) therapy to treat T-ALL.

To document

Abstract

Two Life-Cycle Assessments (LCAs) were conducted to evaluate the environmental performances of selected novel eco-intensification innovations for the treatment and valorisation of sludge and fish mortalities from finfish aquaculture. The first innovation is based on a new process for filtering and drying particles from the reject water from a Recirculating Aquaculture System (RAS), with end-of-life recovery of nutrients and biomass to be reused as organic fertiliser or as energy source. The second process is based on a new device for drying fish mortalities and reusing the end-product as ingredient in the pet food industry or as energy source. Innovations refer to a functional unit of 1 ton of farmed fish and of fish mortalities, respectively, and were tested with a RAS for smolt production within the physical system boundary of a Norwegian facility. A set of standard indicators was selected for the Life-Cycle Impact Assessment (LCIA). The results indicate that the new processes compare well with the established ones, showing a marked decrease in most impact categories: indicators decrease by −12% through to −67% when sludge treatment innovations are applied, and by more than −86% after novel changes about fish mortality, with water consumption instead increasing by +7% and up to +50%, respectively. Furthermore, the analysis provided insights which could lead to improve their environmental performances.

To document

Abstract

Bilberry fruit is regarded as one of the best natural sources of anthocyanins and is widely explored for its health-beneficial compounds. Besides anthocyanins, one of the major attributes that determine the berry quality is the accumulation of sugars that provide sweetness and flavor to ripening fruit. In this study, we have identified 25 sugar metabolism-related genes in bilberry, including invertases (INVs), hexokinases (HKs), fructokinases (FKs), sucrose synthases (SSs), sucrose phosphate synthases (SPSs), and sucrose phosphate phosphatases (SPPs). The results indicate that isoforms of the identified genes are expressed differentially during berry development, suggesting specialized functions. The highest sugar content was found in ripe berries, with fructose and glucose dominating accompanied by low sucrose amount. The related enzyme activities during berry development and ripening were further analyzed to understand the molecular mechanism of sugar accumulation. The activity of INVs in the cell wall and vacuole increased toward ripe berries. Amylase activity involved in starch metabolism was not detected in unripe berries but was found in ripe berries. Sucrose resynthesizing SS enzyme activity was detected upon early ripening and had the highest activity in ripe berries. Interestingly, our transcriptome data showed that supplemental irradiation with red and blue light triggered upregulation of several sugar metabolism-related genes, including α- and β-amylases. Also, differential expression patterns in responses to red and blue light were found across sucrose, galactose, and sugar-alcohol metabolism. Our enzymological and transcriptional data provide new understanding of the bilberry fruit sugar metabolism having major effect on fruit quality.